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Abstract—Counting distinct elements (also named flow car-
dinality) of large data streams in the network is of primary
importance since it can be used for many practical monitoring
applications, including DDoS attack and malware spread detec-
tion. However, modern intrusion detection systems are struggling
to reduce both memory and computational overhead for such
measurements. Many algorithms are designed to estimate flow
cardinality, in which HyperLogLog has been proven the most
efficient due to its high accuracy and low memory usage. While
HyperLogLog provides good performance on flow cardinality
estimation, it has inherent algorithmic vulnerabilities that lead
to both security and robustness issues. To overcome these issues,
we first investigate two possible threats in HyperLogLog, and
propose corresponding detection and protection solutions. Lever-
aging proposed solutions, we introduce CARBINE, an approach
that aims at identifying and eliminating the threats that most
probably mislead the output of HyperLogLog. We implement
our CARBINE to evaluate the threat detection performance, es-
pecially in case of a practical network scenario under volumetric
DDoS attack. The results show that our CARBINE can effectively
detect different kinds of threats while performing even higher
accuracy and update speed than original HyperLogLog.

I. INTRODUCTION

Network monitoring [1]–[8] plays a key role in network
management as it can collect network data and infer statistics
to diagnose network performance and security issues [9]. How-
ever, the monitoring in modern intrusion detection systems
is struggling to measure traffic in high-speed networks as
the network data becomes distributed and massive. Collect-
ing exact measurement of extensive network data streams is
often impractical due to excessively high memory occupa-
tion and computational/communication overhead, and utilizing
probabilistic estimation through compact data structures (e.g.
sketches) is a feasible alternative.

In network monitoring, flow cardinality estimation [10], [11]
is a fundamental problem, which estimates the number of
distinct flows in a predefined measurement time interval. Each
flow is uniquely identified by one or multiple fields in the
packet headers, called flow key, which can be flexibly defined
based on monitoring application requirements. The flow key
under measurement can be any subset of 5 tuple or other fields
that appear in packet header. For example, for each destination,
if source IPs are treated as flow key, then the flow cardinality
indicates the number of distinct source addresses that contact
the same destination, which can be used as a metric for
DDoS victim identification [12]. Existing research on flow
cardinality estimation mainly focuses on the design of sketches
to store the summary of raw traffic data within small amounts
of memory. As illustrated in Fig.1, the sketches are usually
offloaded to a monitoring server for measuring traffic and local
query, with the goal to minimize the communication overhead
between collector and servers. On the other side, the collector
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Fig. 1: Deployment scenario

is responsible for merging sketches from multiple servers and
monitoring global network status. However, if no protection
of sketches is considered, the values in the sketches may be
modified by attackers, leading to large bias on the estimations
in both servers and collectors. The inaccurate estimations may
further cause wrong inference on anomaly detection.

Therefore, the goal of this paper is to study the security and
robustness of HyperLogLog [13], which is the most common
and practical sketch used for flow cardinality estimation in
network monitoring [14]–[16]. Comparing to existing sketch-
based flow cardinality estimation algorithms, HyperLogLog is
more efficient on the estimation of large data streams due to its
high accuracy and low memory usage. Furthermore, multiple
HyperLogLog sketches can be easily merged into a single
sketch to compute the union of different packet streams, which
is appropriate for the deployment scenario in Fig.1.

As HyperLogLog is widely used in monitoring for anomaly
detection purpose (e.g. DDoS [10] and port scan detection
[17]), attackers can try to evade the detection or cause false
alarms by exploiting the vulnerabilities of HyperLogLog. For
instance, the attackers can handle the hashed inputs of Hyper-
LogLog by varying the flow key to prevent the increments
of estimated flow cardinality [18]. Similarly, the attackers
can also inflate the values in HyperLogLog with a set of
flows containing abnormal large values to cause detection false
positives.

With those threats in mind, we present a theoretical analysis
of HyperLogLog to explore its additional properties that can
be used to detect aforementioned threats. We then propose
corresponding detection and protection solutions against the
threats. Based on proposed solutions, we present CARBINE
(seCure And RoBust Improved caridNality Estimation), an
approach aims to enhance the security and robustness of
HyperLogLog and provide accurate flow cardinlaity estimation
in monitoring servers. The evaluation results on real network
flow traces show that CARBINE is effective to detect two
different kinds of threats while maintaining good accuracy
and high update speed. In summary, we make the following



contributions:
• We theoretically analyze HyperLogLog and explore its

additional properties, including mode, maximum and
minimum value. We then show how we can derive them
from the sum of register values. Additionally, we also find
some new relations of packet count in HyperLogLog that
can be used for the detection of threats.

• Based on our theoretical analysis, we present CARBINE,
an improved HyperLogLog approach for secure and ro-
bust flow cardinality estimation in monitoring servers.
CARBINE is able to detect two different kinds of threat
models and protect HyperLogLog.

• We evaluate our approach using real-world Internet
traces, and show good accuracy and high speed on
threats detection. In particular, we also give a case study
considering volumetric DDoS attacks within a practical
network scenario.

II. BACKGROUND OF HYPERLOGLOG

In this section, we first introduce HyperLogLog algorithms
in detail. We then present additional properties of Hyper-
LogLog through theoretical analysis.

A. Basic idea of HyperLogLog

HyperLogLog [13] is a sketch-based algorithm that can be
used to estimate large number of distinct flows traversing
a network monitoring point. They envision two types of
operations: Update and Query. Update operation updates the
HyperLogLog sketch with flow information from the incoming
packet, whereas Query operation is adopted to retrieve from
the sketch the estimated flow cardinality. As shown in Fig. 2,
the Update operation works as follows: given an incoming
packet with flow key id (e.g. any subset of 5 tuple) and
an m-sized (m ∈ {24, 25, · · · , 216}) HyperLogLog regis-
ter M with l bits each cell, HyperLogLog applies to id
a uniform distributed hash function h with output size os
(os ≥ 2l + log2 m): the resulted os-bit binary string h(id) is
denoted by h(id) = [0 : os−1]. HyperLogLog then updates an
m-sized register M . Let j be the leftmost log2 m bits of h(id)
and x the 2l bits of remaining, i.e., j = h(id)[0 : log2 m− 1]
and x = h(id)[log2 m : log2 m + 2l − 1]. M is updated
following this rule: Mj = max(Mj , v(x)), where v(x) is
the index of the leftmost 1 of x plus one. For instance, x
is 0100, then v(x) is 2. Fig. 3 shows the probability of v(x)
in HyperLogLog: the possible appearance of v(x) = υ is 2−υ

of all incoming packets. Register M can then be queried to
estimate the flow cardinality n̂tot when n̂tot is within the range
( 52m, 1

302
32] using Harmonic mean of power of 2, that is,

n̂tot = αHLL
m m2(

∑m−1
0 2−Mj )−1, in which αHLL

m is a bias
correction parameter of HyperLogLog. In this paper, we will
only focus on the flow cardinality estimation in this range. For
the estimation beyond this range, please refer to the original
HyperLogLog [13] for small and large range corrections.

Another algorithm called LogLog [19] performs the same
Update operation as HyperLogLog, but LogLog uses arith-
metic mean to estimate the flow cardinality n̂tot, which is
computed as n̂tot = αmm2

Sum
m , where αm is a bias correction

parameter of LogLog and Sum equals to
∑m−1

j=0 Mj . The

Fig. 2: Scheme of
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theoretical standard error of LogLog is 1.30/
√
m, and that

of HyperLogLog is 1.04/
√
m, where m is the size of register

M . Note that LogLog is required in the following to explore
new properties of HyperLogLog.

An interesting property of HyperLogLog is that multiple
same-sized HyperLogLog sketches can be merged into a
single sketch, which can be used to count the flow car-
dinality of the union of many packet streams. Note that
all sketches should use the same hash functions. Consider-
ing b HyperLogLog sketches M1,M2, · · · , M b with size
m, the merged HyperLogLog sketch satisfies Mmerge =
[max(M1

j=0,M
2
j=0, · · · ,M b

j=0), · · · ,max(M1
j=m−1,

M2
j=m−1, · · · ,M

p
j=m−1)]. Finally, the merged sketch can be

queried by the same way as a single HyperLogLog.

B. Additional properties of HyperLogLog

In this section, we present a theoretical analysis to explore
additional properties of HyperLogLog, including mode (i.e.
the most frequent value), maximum and minimum value in
m-sized HyperLogLog register M . If not otherwise specified,
the register cell size lcell is 5 bits each, i.e., the value in each
register cell is up to 31. We use symbol ntot to denote the
actual flow cardinality, and n̂tot its estimation.

1) Mode, minimum and maximum in HyperLogLog register:
Theorem 1. As ntot → ∞, if kmode is the mode of the
HyperLogLog register M , e−

ntot

m2kmode → 0.5

Proof. According to [13], the values Mj in HyperLogLog
register satisfy following probability distribution:

P(Mj = k) = (1− 1

m2k
)ntot − (1− 1

m2k−1
)ntot

where k is the value in Mj .
As ntot → ∞, the equation can be converted to the

following based on (1 + x)α ≈ eαx when |x| is small and
|αx| is large:

P(Mj = k) = e−
ntot
m2k − e−

2ntot
m2k = −(e−

ntot
m2k − 0.5)2 + 0.25

It shows that when e−
ntot
m2k → 0.5, P(Mj = k) reaches

the maximum. In this case, k = kmode, that is, kmode is the
most frequent value appearing in HyperLogLog register Mj

(0 ≤ j ≤ m− 1).

Theorem 2. With a probability at least m−2
m−1 , the minimum

value in the HyperLogLog register is kmin = kmode −
⌊log2 log2 m⌋ if kmode > ⌊log2 log2 m⌋ (⌊⌋ is the floor
function), otherwise, the minimum value is 0.



Proof. If k = kmode − ξ(integer ξ ≥ 1), the probability is:

P(Mj = kmode − ξ) = −(e−
ntot

m2
kmode−ξ − 0.5)2 + 0.25

= −((e−
ntot

m2kmode )2
ξ

− 0.5)2 + 0.25

(By Theorem 1)→ −((0.5)2
ξ

− 0.5)2 + 0.25

= 0.52
ξ

− (0.52
ξ

)2 = 0.52
ξ

(1− 0.52
ξ

)

We use 0.52
ξ

to approximate P(Mj = kmode − ξ) because
the difference between 0.52

ξ

and 0.52
ξ

(1− 0.52
ξ

) is 0.52
ξ+1

,
which decreases as ξ increases. When ξ is greater than 1, they
are almost overlapped.

Considering the HyperLogLog register size m, and theoret-
ically, the minimum value of the register kmin = kmode− ξ if
P(k = kmin) ≥ 1

m and P(k = kmin − 1) < 1
m , meaning that

no value smaller than kmin appears in m-sized HyperLogLog.
Therefore, we have:

P(k = kmin) = 0.52
ξ

≥ 1

m
⇒ m ≥ 22

ξ

⇒ ξ ≤ log2 log2 m

When k = kmin − 1, P(k = kmin − 1) = 0.52
ξ+1

< 1
m

implies m < 22
ξ+1

, and ξ > log2 log2 m − 1. Hence, the
unique possible integer of ξ is ⌊log2 log2 m⌋.

The probability P(k < kmin) is: P(k < kmin) =

0.52
ξ+1

+ 0.52
ξ+2

+ 0.52
ξ+3

+ · · · < 0.52
ξ+1

+ (0.52
ξ+1

)2 +

(0.52
ξ+1

)3 + (0.52
ξ+1

)4 + · · · → 0.52
ξ+1

( 1

1−0.52
ξ+1 ). Since

0.52
ξ+1

( 1

1−0.52
ξ+1 ) is a monotonic function and 0.52

ξ+1

< 1
m ,

P(k ≤ kmin − 1) < 1
m ·

1
1− 1

m

= 1
m−1 .

Therefore, with a probability at least 1− 1
m−1 = m−2

m−1 , kmin

can be formulated as follows:

kmin =

{
0 if kmode ≤ ⌊log2 log2 m⌋
kmode − ⌊log2 log2 m⌋ otherwise

Theorem 3. With a probability at least m−1
m , the maximum

value in the HyperLogLog register M is kmax = kmode +
log2 m− 1 if kmode ≤ 32− log2 m. Else, the maximum value
is 31.

Proof. Theorem 1 indicates that P(Mj = kmode)→ 0.25 and
e
− ntot

m2kmode → 0.5. If k is larger than kmode and k = kmode+
η(integer η ≥ 1), the probability of Mj = kmode + η is:

P(Mj = kmode + η) = −(e−
2−ηntot

m2kmode − 0.5)2 + 0.25

= −(0.52
−η

− 0.5)2 + 0.25

When η tends to large, the equation can be further deduced
by applying twice of Binomial approximation (BA), i.e., (1−
x)α ≈ 1− αx when |x| < 1 and |αx| ≪ 1:

P(Mj = kmode + η) = −((1− 0.5)2
−η

− 0.5)2 + 0.25

(By BA) = −((1− 0.5 · 2−η)− 0.5)2 + 0.25

= −0.25(1− 2−η)2 + 0.25

(By BA) = −0.25(1− 2 · 2−η) + 0.25 = 2−η−1

When η is the largest integer that satisfies P(kmode + η) ≥
1
m , kmode + η is the maximum value:

P(k = kmode + η) = 2−η−1 ≥ 1

m
⇒ η ≤ log2 m− 1

However, note that if η′ = η + u(u ∈ N+), the prob-
ability P(k = kmode + η′) is P(k = kmode + η′) =

2−(log2(m)−1+u)−1 = 2−u

m , and P(k > kmode + η) tends to 1
m

because P(k > kmode + η) = 1
m

∑32−log2(m)−kmode

u=1 2−u →
1
m

2−1

1−2−1 = 1
m . This means that kmode + η′ is possible to be

the largest value kmax in the register especially when kmode

is small.
Since the limit of each register cell in HyperLogLog is

31, by replacing kmode + log2 m − 1 to kbasemax (named base
maximum), with a probability at least 1 − 1

m = m−1
m , kmax

is equal to:

kmax =

{
kbasemax kmode ≤ 32− log2 m

31 otherwise

Remark. Unlike mode and minimum in HyperLogLog, if
there is a value greater than kbasemax, the maximum is changed.
Therefore, with a probability at most 1

m , the maximum kmax

is kbasemax + u(u ∈ N+). The parameter u depends on the
hash function since different hash functions generate different
largest hashed values v(x).

2) Derive minimum and base maximum value from the
sum of HyperLogLog register: Once understanding that the
minimum and base maximum value of HyperLogLog register
depend on the mode and register size m, in this subsection,
we demonstrate that it is possible to directly retrieve these
additional properties from the sum of HyperLogLog register.
The demonstration relies on the property that LogLog uses the
sum to query the flow cardinality, and note the difference of
LogLog and HyperLogLog.

Lemma 1. ntot

m is in the range 2kmode−1 ≤ ntot

m < 2kmode

Proof. e
− ntot

m2kmode → 0.5 (By Theorem 1) implies that ntot

m →
2kmode ln 2. Since ln 2 ≈ 0.693 and e

− ntot

m2kmode cannot be 1,
ntot

m should locate within [2kmode−1, 2kmode).

Lemma 2. As ntot → ∞, by expressing
∑m−1

j=0 Mj as
Sum, αm2

Sum
m approximately follows a normal distribution

N (ntot

m , ( 1.30m )2(ntot

m )2), where αm is the correction parame-
ter of LogLog algorithm and M is HyperLogLog register.

Proof. As ntot → ∞, LogLog estimation approximately
follows the normal distribution n̂LL = αmm2

Sum
m ∼

N (µLL, σ
2
LL), where µLL = ntot and σ2

LL = ( 1.30√
m
)2n2

tot.
A similar approach has been proven in [18]. According to
the linearity of normal distribution, n̂LL

m = αm2
Sum
m ∼

N ( 1
mµLL,

1
m2σ

2
LL). Applying µp = 1

mµLL = ntot

m and
σ2
p = 1

m2σ
2
LL = ( 1.30√

m
)2(ntot

m )2, αm2
Sum
m approximately

follows a normal distribution N (µp, σ
2
p), that is, αm2

Sum
m is

an asymptotically unbiased estimator of ntot

m with coefficient

of variation σp

µp
=

1.30√
m

ntot
m

ntot
m

= 1.30√
m

.

Lemma 3. As ntot → ∞ and m → ∞, given αm is the
correction parameter of LogLog algorithm, log2 (αm2

Sum
m ) is

an unbiased estimator of log2(
ntot

m ), i.e. log2 (αm2
Sum
m ) =

log2(
ntot

m ).



Proof. By Lemma 2, σp

µp
= 1.30√

m
, as m is usually very

large, σp

µp
= 1.30√

m
→ 0. This allows us to use Taylor

expansions to accurately approximate the expectation and
variance of log2 αm2

Sum
m : E[log2 αm2

Sum
m ] ≈ log2 µp +

(log2 µp)
′′

2 σ2
p = log2 µp −

σ2
p

2 ln 2·µ2
p

and V ar[log2 αm2
Sum
m ] ≈

((log2 µp)
′)2σ2

p =
σ2
p

(ln 2µp)2
. As σp

µp
→ 0, E[log2 αm2

Sum
m ] →

log2 µp = log2(
ntot

m ) and V ar[log2 αm2
Sum
m ]→ 0.

Lemma 4. Being αm the correction parameter of LogLog,
the mode kmode in HyperLogLog can be estimated as
⌈log2 αm2

Sum
m ⌉ (⌈⌉ is the ceil function).

Proof. By Lemma 1, kmode should satisfy kmode =
⌈log2 ntot

m ⌉. By Lemma 2 and 3, we can approximate ntot

m

with αm2
Sum
m , and so: kmode = ⌈log2 αm2

Sum
m ⌉

Theorem 4. The minimum value kmin in HyperLogLog reg-
ister can be estimated as ⌈log2 αm2

Sum
m ⌉ − ⌊log2 log2 m⌋ if

Sum > Tminm, where Tmin = (⌊log2 log2 m⌋+ 1.33).

Proof. By Theorem 2, kmin = 0 if kmode ≤ ⌊log2 log2 m⌋.
Given αm = 0.39701 (constant in LogLog), applying Lemma
4 implies:

⌈log2 αm2
Sum
m ⌉ ≤ ⌊log2 log2 m⌋

log2 αm2
Sum
m ≤ ⌊log2 log2 m⌋(Since⌊log2 log2 m⌋ ∈ N+)

Sum ≤ (⌊log2 log2 m⌋+ 1.33)m

and kmin = kmode − ⌊log2 log2 m⌋ = ⌈log2 αm2
Sum
m ⌉ −

⌊log2 log2 m⌋. More generally, by replacing (⌊log2 log2 m⌋+
1.33)m to Tmin, for any integer p ≥ 1 (p = ⌈log2 αm2

Sum
m ⌉−

⌊log2 log2 m⌋), kmin = p if kmode > ⌊log2 log2 m⌋ + p − 1
and kmode = ⌊log2 log2 m⌋+ p, which means that:

⌊log2 log2 m⌋+ p− 1 < ⌈log2 αm2
Sum
m ⌉ = ⌊log2 log2 m⌋+ p

⌊log2 log2 m⌋+ p− 1 < log2 αm2
Sum
m ≤ ⌊log2 log2 m⌋+ p

(Tmin + p− 1)m < Sum ≤ (Tmin + p)m

Finally, we can express kmin as follows:

kmin =

{
0 if Sum ≤ Tminm

p if(Tmin + p− 1)m < Sum ≤ (Tmin + p)m

Theorem 5. The base maximum value kbasemax in HyperLogLog
register can be estimated as ⌈log2 αm2

Sum
m ⌉ + log2 m − 1 if

Sum < (33.33 + log2 m)m.

Proof. According to Theorem 3, kbasemax = 31 if kmode ≥
32 − log2 m. By replacing kmode to ⌈log2 αm2

Sum
m ⌉(αm =

0.39701) as proofed in Lemma 4 yields:

⌈log2 αm2
Sum
m ⌉ ≥ 32− log2 m

log2 αm2
Sum
m ≥ 32− log2 m− 1

Sum ≥ (32.33 + log2 m)m

and kbasemax is:

kbasemax = kmode + log2 m− 1 = ⌈log2 αm2
Sum
m ⌉+ log2 m− 1

Therefore, for any integer q > kmode, when kbasemax = q,
kmode = q + 1− log2 m, and:

q − log2 m < ⌈log2 αm2
Sum
m ⌉ = q + 1− log2 m

q − log2 m < log2 αm2
Sum
m ≤ q + 1− log2 m

(1.33 + q − log2 m)m < Sum ≤ (2.33 + q − log2 m)m

Finally, by defining 1.33 − log2 m as Tmax, for any q >
kmode, we can express kmax as follows:

kbasemax =

{
q if (Tmax + q)m ≤ Sum < (Tmax + q + 1)m

31 if Sum ≥ (32.33 + log2 m)m

Remark. Theorem 4 and 5 show that kmin and kbasemax

change only in case that Sum increments m (i.e. the size
of HyperLogLog register). This means that when there are
few abnormal large values in the HyperLogLog register, the
estimations of kmin and kbasemax are not affected.

3) The relation between the sums of different HyperLogLog
registers on the same packet stream: Considering two m-
sized HyperLogLog registers, namely HLL1 and HLL2, with
different input hash functions to estimate the flow cardinality,
the sum of HLL1 is Sum1 and that of HLL2 is Sum2.
Given the actual flow cardinality is ntot, the estimated flow
cardinality by HLL1 is n̂1, and that of HLL2 is n̂2.

Lemma 5. The sum of HyperLogLog register follows a normal
distribution N (µSum, σ2

Sum) where µSum = m log2(ntot) −
m log2(αmm), and σ2

Sum = 3.51m

Proof. Since LogLog estimates flow cardinality as n̂tot =
αmm2

Sum
m , Sum = m log2(n̂tot) − m log2(αmm), the ex-

pectation is E[n̂tot] = ntot, and the variance V ar[n̂tot] =
1.302

m n2
tot. Similar to what we proofed in Lemma 3, ap-

plying Taylor expansion yields: E[Sum] = m log2(ntot) −
m log2(αmm) and V ar[Sum] = m2V ar[log2(ntot)] =

m2 V ar[n̂tot]
(ln 2E[n̂tot])2

= 3.51m.

Theorem 6. The difference of Sum1 and Sum2 follows a nor-
mal distribution N (0, 7.02m), where m is the HyperLogLog
register size.

Proof. Given Sum1 − Sum2 = m log2(n̂1) − m log2(n̂2),
the expectation of Sum1 − Sum2 is 0, and the variance is
2 · 3.51m = 7.02m

Remark. Possible attacks on HyperLogLog register for mon-
itoring purpose can be detected if the sum difference of two
HyperLogLog registers is greater than w times of standard de-
viation

√
7.02m, where w can be chosen by network operator

based on standard normal distribution table.

4) The relation between the packets with v(x) = 1 and
the total number of packets: Considering a packet stream
S = {f1, f2, · · · , fntot

}, of which the total number of packets
is Stot and flow number is ntot (ntot ≤ Stot). Moreover,
S1s represents the number of packets with v(x) = 1 and n1s

denotes its flow number:

Lemma 6. Being R1s = S1s

n1s
the average packet number per

flow with v(x) = 1 and Rtot = Stot

ntot
the overall average



flow packet number, as n1s → ∞, R1s follows a normal
distribution N (µ,

σ2
S

n1s
), where the expectation µ is equal to

Rtot and σ2
S is the variance of flow packet count fi in packet

stream S (i.e. σ2
S =

∑ntot
i=1 (fi−µ)2

ntot
).

Proof. Given the packets with v(x) = 1 are n1s random
samples from ntot, according to Central limit Theorem, the
mean value of n1s random samples S1s

n1s
, follows a normal dis-

tribution with expectation Rtot =
Stot

ntot
and variance σ2

S

n1s
.

Theorem 7. As ntot →∞, S1s

Stot
follows a normal distribution

N (0.5, σ2
S(

ntot

2S2
tot

)).

Proof. We first rewrite S1s

Stot
to n1sR1s

ntotRtot
. According to strong

law of large numbers, n1s

ntot
= 1

2 as ntot → ∞ (see Fig. 3),
and so S1s

Stot
= R1s

2Rtot
. By Lemma 6, R1s follows a nor-

mal distribution N (Rtot,
σ2
S

n1s
), so the expectation of S1s

Stot
is:

µ S1s
Stot

= E[ S1s

Stot
] = E[ R1s

2Rtot
] = E[R1s]

2Rtot
= 0.5, and the

variance is V ar[ S1s

Stot
] = V ar[ R1s

2
Stot
ntot

] = V ar[R1s](
ntot

2Stot
)2 =

σ2
S

n1s
(

n2
tot

4S2
tot

) =
σ2
S

0.5ntot
(

n2
tot

4S2
tot

) = σ2
S(

ntot

2S2
tot

).
The corresponding standard deviation σ S1s

Stot

is:

σ S1s
Stot

=

√
V ar[

S1s

Stot
] =

√
2

2
σS

√
ntot

Stot

Remark. When Stot →∞ in a given time interval, σ S1s
Stot

→
0, and S1s

Stot
→ 0.5. Moreover, we can use standard normal

distribution table to analyze the desired false positive rate
(FPR), that is, FPR = 1−Φ(w) , where Φ(w) is the cumula-
tive distribution function for the standard Normal distribution
N (0, 1). For example, if w is set to 2, the probability of
| S1s

Stot
− µ S1s

Stot

| ≤ 2σ S1s
Stot

is 95%, and FPR should be only
5%. While w = 3 is chosen, FPR is just 0.3%.

III. SECURE AND ROBUST CARDINALITY ESTIMATION

In this section, we present CARBINE, an approach for
secure and robust flow cardinality estimation in monitoring
servers, which is built on top of HyperLogLog.

A. Threat models

We consider the case that HyperLogLog is in a black box,
that is, the attacker does not know the hash function used
in HyperLogLog. The hash functions are not typical hash
functions, and they are usually accompanied with a specific
seed, which is commonly used in modern hashes (e.g. xxhash
[20]). Unlike regular hash function hashes flow key id with
h(id), changing the seed s of the hash functions h(id, s)
will completely change the output. Nevertheless, the attacker
can insert fake flows into HyperLogLog to check the flow
cardinality output (e.g. fuzz testing [21]). This can be easily
done if the attacker knows that some specific applications
using HyperLogLog are deployed in monitoring servers, such
as Redis [14], Spark [16], and Presto [15]. The attacker only
needs to install these applications on a server and test the
estimated flow cardinality by crafting the flow key, such as

varying the spoofed source IP and/or port. In this paper, we
focus on two possible threat models:

M1 - Inflating attacks: The attacker adds a sequence of
flows into HyperLogLog, of which the hashed flow id h(id, s)
can generate large values v(x). The generated large v(x) will
significantly increment the values of some register cells, which
causes large bias of flow cardinality estimation. This may lead
to a lot of false positives for network monitoring servers to
detect network anomalies.

M2 - Evasion attacks: The attacker has a set of flows F
with cardinality nattack and wants that they do not increment
the cardinality estimation of HyperLogLog. This would be
achieved if for all the flows id in F , the hashed value v(x) = 1
or other small v(x) below the values in the register cell Mj .
Therefore, in this case, the flows in F would not increment
any HyperLogLog register cells, and it is unlikely to affect the
cardinality estimates at all for large cardinality. The malicious
traffic generated by attackers can thereby evade the detection
of HyperLogLog-based monitoring system.

B. Detection

In this section, we report how CARBINE detects possible
threats. The workflow of CARBINE in the monitoring server
is shown in Fig. 4: there are two m-sized HyperLogLog
registers in CARBINE. Apart from the original HyperLogLog
register M , there is a backup HyperLogLog register M̃ . The
unique difference of them is that they are using different
hash functions, that is, h() for original HyperLogLog and
g() for backup HyperLogLog. Algorithm 1 describes how the
HyperLogLog register (i.e., M or M̃ ) is updated and queried.
Each incoming packet has a flow key id, and we can retrieve a
value v(x) from the binary value of hashed id (Lines 7-8). If
v(x) is greater than the real-time minimum kmin but smaller
than or equal to the base maximum kbasemax, then j is collected
from hashed id, and v(x) is compared to Mj , that is, the value
at the index j of HyperLogLog register M (Lines 9-10). kmin

and kbasemax are updated based on the sum of register values,
i.e.,

∑m−1
i=0 Mj . This can help us to prevent a large number

of unnecessary accesses to the HyperLogLog register when
v(x) < kmin or v(x) > kbasemax. If v(x) is larger than Mj ,
we add the incremented value (i.e. v(x) − Mj) to the sum
and increment kmin and kbasemax if meeting the condition (Lines
11-16). Note that the HyperLogLog registers in CARBINE
are still mergeable if the HyperLogLog registers in other
monitoring servers use the same hash function and seed. In
addition to the updates on HyperLogLog, any incoming packet
increments the counter Stot. If the packet has v(x) = 1, it also
increments the counter S1s.

M1 detection As proven in Theorem 3, with a probability at
least m−1

m , v(x) in HyperLogLog register should not be larger
than kbasemax. Therefore, if v(x) is greater than real-time base
maximum kbasemax during time interval, this can be considered
as an M1 threat.

M2 detection According to theorem 7, ideally, as the
number of all incoming packets is large enough, the packets
with v(x) = 1 should be the half. Therefore, we denote S1s

by S̃1s = (0.5 + θ)S̃tot, where θ is a parameter to represent
the fluctuations and P(|θ| ≤ 3σ S1s

Stot

) ≥ 99.7%. However,
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v(x) = h(id, s)

At the end
of time interval
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time interval

kmin
Sum

+ = diff

Sum > (kmin + Tmin)m→ kmin+ = 1 and kbase
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(See Theorem 4 and 5)
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Stot+ = 1

v(x̃) = g(id, s)
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v(x) = 1

if | S1s

Stot
− 0.5| > τ or Sum− ˜Sum > Tsum

→ ThreatModel = M2
n̂tot = Query(M̃)

if v(x) > kbase
max or v(x̃) > k̃base

max

→ ThreatModel = M1 → Filter out v(x) or v(x̃)

Monitoring server

else

Fig. 4: Scheme of CARBINE in monitoring server

Algorithm 1: CARBINE

1 m← 2l (l ∈ {4, ..., 16}), Sum← 0, s← 1
2 M ← m-sized HyperLogLog register
3 Tmin = ⌊log2 log2m⌋+ 1.33, kmin ← 0
4 kbase

max ← kmin + ⌊log2 log2m⌋+ log2m− 1
5 Function UpdateHLL(M):
6 for Each packet with flow key id do
7 t← (Hash(id, s)→ {0, 1}64)
8 v(x)← leftmost one of t[l : l + 31]+1
9 if kmin < v(x) ≤ kbase

max then
10 j ← t[0 : l − 1]
11 if v(x) > Mj then
12 diff ← v(x)−Mj , Mj ← v(x)
13 Sum← Sum+ diff
14 if Sum > (Tmin + kmin)m then
15 kmin ← kmin + 1
16 kbase

max ← kbase
max + 1

17 Function QueryHLL(M):
18 n̂tot ← αHLL

m ·m2 ·
∑m−1

j=0 2−Mj

when an evasion attack happens, even though the values in
the register do not increment, the packet count with small
v(x) still increases. This will break the regular packet count
probability distribution of v(x). Given such an observation,
we propose a new method to detect M2 evasion attack.

Being S̃tot the number of incoming packets in legitimate
traffic and S̃1s the number of packets with v(x) = 1 in a given
time interval , assuming that the attack traffic volume is SA, in
which a fraction α (0 ≤ α ≤ 1) of SA are with v(x) = 1, the
ratio between the number of packets with v(x) = 1 counted in
register S1s and Stot can be expressed as: S1s

Stot
= S̃1s+SA

S̃tot+SA
=

(0.5+θ)S̃tot+αSA

S̃tot+SA
= 0.5+θ+ (α−0.5−θ)SA

S̃tot+SA
= 0.5+θ+ α−0.5−θ

S̃tot
SA

+1
.

Intuitively, φA = |α−0.5−θ
S̃tot
SA

+1
| > 0 means that an evasion attack

is taking place, and so an M2 alarm is triggered if:

| S1s

Stot
− 0.5| > τ = |θ + φA|

By Theorem 7, if |θ+φA| > 2σ S1s
Stot

, the attack can be detected
with only 5% false positive rate. While σ S1s

Stot

is computed from
√
2
2 σS

√
ntot

Stot
, the network operator can analyze the previous

long-term flow statistics in the network to approximate the
variance in a given time interval. This would not be a limitation
for our case since the traffic matrix in ISP networks is usually
stable, and we will also show this fact in our experimental eval-
uation. Supposing |θ| ≤ 2σ S1s

Stot

, |φA| should be greater than
4σ S1s

Stot

so that |θ+φA| > 2σ S1s
Stot

is always true. It can be also
noted that a higher attack traffic volume SA leads to a larger
φA, and the attack is easier to get detected. The appropriate
network scenario for our M2 detection can be a volumetric
(i.e. high-packet-rate) DDoS attack that evades flow cardinality
control in the monitoring server using HyperLogLog.

We assume that the DDoS attacker generates a bunch of
packets with v(x) = 1 to different register cells. This is the
most common case for attackers since attacker does not know
the minimum of HyperLogLog register. Such a simple attack
has been discussed in [22] and demonstrated to be effective.
Thus, in this case, α = 1, and the attack is detected if |φA| =

| 0.5−θ
S̃tot
SA

+1
| ≥ 4σ S1s

Stot

. For instance, while σ S1s
Stot

= 0.015, SA

S̃tot
≥

0.14, which means that the volumetric DDoS attack with attack
traffic volume SA greater than 14% of total volume S̃tot can
always be detected.

We would not ignore the possible limitation of our approach:
if the fraction α of packets with v(x) = 1 is closer to 0.5 (e.g.
the half of attack traffic volume in the time interval is with
v(x) = 1 and the other half is with v(x) = 2), the attack will
be almost impossible to get detected. However, we believe
that this case only rarely happens in black box case: since the
attacker does not know any information (e.g. minimum and
v(x)) inside HyperLogLog, the most reliable way for attackers
is to generate the flow keys that do not increment the flow
cardinality estimations in any testing HyperLogLog instances.
This means that the resulted flow keys are mostly with v(x) =
1. Moreover, as proven in Theorem 6, if the difference of the
sum of two HyperLogLog registers in CARBINE is greater
than a given threshold Tsum (i.e. w times of

√
7.02m), we

also trigger an M2 threat alarm.

C. Protection

M1 protection Any inflating attack will be pro-actively
filtered out by our CARBINE since the values v(x) greater
than kbasemax are not considered in the HyperLogLog register. In
this way, CARBINE is robust to extremely large values. In our
evaluation (see Section IV-C), we will also show that removing
v(x) > kbasemax can help improve the accuracy of HyperLogLog.

M2 protection If an alarm of M2 is triggered, at the end
of time interval, collector coordinates all monitoring servers
in the network to query the backup HyperLogLog register
M̃ to perform network-wide flow cardinality estimation. This
means that it is possible to recover the actual flow cardinality
estimation even though the HyperLogLog register is under
evasion attack. Meanwhile, collector needs to force monitoring
servers to change the seed in the hash function used for
HyperLogLog for the following time intervals.

IV. EVALUATION

We implemented our entire CARBINE strategy in Python
to study its performance over simulated network scenario.



Fig. 5: The estimations in the HyperLogLog register (m=210)Maximum Minimum Mode
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A. Testing flow traces and default settings
In our simulations, we used three 10-minutes CAIDA pas-

sive flow traces collected from a 10 Gbps backbone link, in
which CAIDA 2016 [23] contains 300 million packets, CAIDA
2018 [24] contains 276 million packets, and CAIDA 2019
[25] contains 360 million packets. We first split the CAIDA
2019 trace into different time intervals (i.e. 5, 10, 30 and 60
seconds) to test proposed solutions on different number of
packets. If not otherwise specified, the default flow key is
5 tuple (i.e. source and destination IP, source and destination
port, and protocol), and the length of time interval is 5 seconds.
We then ran for 120 measurement intervals to investigate
the M2 detection performance in consecutive time intervals
considering all three CAIDA flow traces. The hash functions
used for HyperLogLog is xxhash [20]. The 32-bit seed s can be
varied to generate completely different outputs, and by default
it is set to 1. The default HyperLogLog register size m is
210 = 1024, and the register cell size is 5 bits each. As a
result, the threshold Tsum is 2·

√
7.02 · 1024 = 84.

B. Evaluation of maximum, minimum, and mode estimations
Fig. 5 shows the maximum, minimum and mode estima-

tions of HyperLogLog register values varying seed in xxhash
function in different time intervals. The seed in the hash
function is varied from 1 to 100. Clearly, larger time intervals
contain higher number of distinct flows. In all four figures, the
mode kmode and the minimum kmin are mostly inline with
our theoretical analysis: in the worst case (i.e. Tint = 10s),
the estimation accuracy is still greater than 87%, and the
estimation bias of kmode and kmin is at most 1. As proven
in Theorem 1, the bias does not completely depend on the
flow cardinality ntot but ntot

m2k
: when e−

ntot
m2k and e−

ntot
m2k−1 are

close to 0.5, both k and k − 1 have a high probability to be
the mode kmode. This is why Tint = 10s has larger number
of flows than Tint = 5s but the estimation accuracy is lower.
The resulted maximum value kmax of HyperLogLog register
depends on the hash function: as we explained in Theorem 3,
there is a non-negligible probability (i.e. 1

m ) that the maximum
value of HyperLogLog register is kbasemax+u (u ∈ N+). Unlike
mode and minimum, if a flow key is hashed into a large value,
this will replace the maximum value of HyperLogLog within
a whole time interval. This is why most resulted maximum
value is greater than kbasemax.

C. Evaluation of flow cardinality estimation accuracy
In this subsection, we would like to show that filtering

out large values v(x) (i.e. v(x) > kbasemax) not only improves

Fig. 6: Flow cardinality estimation accuracy comparison
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the robustness of CARBINE to inflating attack (M1 threat),
but also performs even higher accuracy on flow cardinality
estimation. As the described query function of HyperLogLog
is to estimate flow cardinality between 5

2m (i.e. 2560) and
1
302

32 ≈ 1.43·108, in our evaluation the tested flow cardinality
range is [12400, 143012400], and the step length is 10000.
Therefore, in total there are 14300 points shown in Fig. 6.
The results show that CARBINE has lower relative error than
HyperLogLog in most cases when varying flow cardinality.
However, in scenarios where HyperLogLog contains a small
number of extremely large values and the majority of values
are close to the mode, HyperLogLog may achieve slightly
better accuracy than CARBINE. Numerically, the average
relative error of CARBINE in those points is 1.94%, whereas
that of HyperLogLog is 2.76%. This reveals that CARBINE
does not degrade the flow cardinality estimation performance
of HyperLogLog, but even better.

D. Case study: volumetric DDoS attacks evading increments
in HyperLogLog

In this subsection, we examine a network facing volumetric
DDoS attacks that try to evade the detection of monitoring
system using HyperLogLog, and network operators can utilize
our approach to detect M2 threats. We analyzed the detec-
tion performance in terms of attack traffic volume and then
compared our approach to a state-of-the-art work considering
several real volumetric DDoS attack flow traces.

1) Evaluation metrics: We consider true-positive rate
DTP , false-positive rate DFP and detection accuracy Dacc

as evaluation metrics of DDoS detction. Given that (i) True
Positive (TP) is the number of time intervals detecting M2
threat while a DDoS attack is occurring in 120 time intervals,
(ii) True Negative (TN) is the number of time intervals
without triggering any M2 threat detection while no DDoS
attack is occurring, (iii) False Positive (FP) is the number of
time intervals detecting M2 threat while no DDoS attack is
occurring, and (iv) False Negative (FN) is the number of time
intervals without triggering M2 threat detection while a DDoS
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TABLE I: Volumetric DDoS detection performance varying
attack traffic volume (flow key = 5 tuple)

Flow trace
name

Attack volume
SA

False positive
DFP

True-positive rate
DTP

Detection accuracy
Dacc

CAIDA2019

5% · S̃tot

2.5% (3/120)

30.83% (37/120) 64.16%
7.5% · S̃tot 70.83% (85/120) 84.17%
10% · S̃tot 95% (114/120) 96.25%

(τ = 0.030) 12.5% · S̃tot 99.17% (119/120) 98.33%
15% · S̃tot 100% (120/120) 98.75%

CAIDA2016

5% · S̃tot

0% (0/120)

35% (42/120) 67.50%
7.5% · S̃tot 81.67% (98/120) 90.83%
10% · S̃tot 98.33% (118/120) 99.17%

(τ = 0.028) 12.5% · S̃tot 100% (120/120) 100%
15% · S̃tot 100% (120/120) 100%

CAIDA2018

5% · S̃tot

0% (0/120)

14.17% (17/120) 57.08%
7.5% · S̃tot 53.33% (64/120) 76.67%
10% · S̃tot 92.50% (111/120) 96.25%

(τ = 0.036) 12.5% · S̃tot 99.17% (119/120) 99.58%
15% · S̃tot 100% (120/120) 100%

attack is instead occurring, the metrics introduced above are
defined as: DTP = TP

TP+FN×100%, DFP = FP
TN+FP ×100%,

and Dacc =
TP+TN

TP+TN+FP+FN × 100%.
2) DDoS detection performance varying attack traffic vol-

ume: We synthesized several flow traces with the attack traffic
volume SA varying from 5% to 15% of the total traffic volume
S̃tot in 120 5-seconds CAIDA 2019 flow trace, and the v(x)
of flows in the attack traffic SA are always hashed to 1. As
a result, the fraction between S1s and Stot can be formulated
as S1s

Stot
= S̃1s+SA

S̃tot+SA
. The threshold τ is set to 2σ̄ S1s

Stot

, where
σ̄ S1s

Stot

is the median value of σ S1s
Stot

in 120 time intervals, that

is, 0.015. This means that if | S1s

Stot
− 0.5| > 2σ̄ S1s

Stot

= 0.03,
it is considered as an M2 threat. Fig. 7 shows that when
there is no attack traffic (i.e. SA = 0), in only 3 among 120
measurements, S1s

Stot
is out of µ + 2σ, which illustrates that

the false positive rate in this experiment is 2.5%. Intuitively,
S1s

Stot
increases as the traffic volume increases, and so the true

positive rate. While the attack traffic volume reaches 12.5%
of total volume S̃tot, the true positive rate is 99.17% and the
corresponding detection accuracy is 98.33%. This is clearly
shown in Table.I. The same experiments are also carried
out in flow trace CAIDA 2016 and CAIDA 2018 with the
same experimental settings. In both CAIDA 2016 and CAIDA
2018, CARBINE behaves similar detection performance as the
experiments in CAIDA 2019, but in CAIDA 2016 CARBINE
can achieve even higher detection accuracy than the other
two cases since the flow distribution in CAIDA 2016 is more
stable, i.e., the median of its standard deviation σ̄ S1s

Stot

is the
smallest among all flow traces.

3) Detection performance comparing to a state-of-the-art
approach considering real DDoS flow traces: In this sub-

TABLE II: Volumetric DDoS detection performance
comparison (flow key = 5 tuple)

Flow trace
name

DDoS
trace
name

No. packets SA

(% of S̃tot)
No. flows nA
(% of ñtot)

DTP of
CARBINE

DTP of
SHLL [18]

CAIDA2019

Booter1 ∼ 400000
(∼ 13%)

∼ 22000
(∼ 7%) 100% 50%

Booter4 ∼ 320000
(∼ 10%)

∼ 117000
(∼ 35%) 100% 100%

Booter6 ∼ 450000
(∼ 15%)

∼ 145000
(∼ 43%) 100% 100%

(τ = 0.030) Booter7 ∼ 170000
(∼ 5%)

∼ 77000
(∼ 23%) 100% 100%

TABLE III: Volumetric DDoS Detection performance
comparison (flow key = {srcIP, dstIP})

Flow trace
name

DDoS
trace
name

No. packets SA

(% of S̃tot)
No. flows nA
(% of ñtot)

DTP of
CARBINE

DTP of
SHLL [18]

CAIDA2019

Booter 1 ∼ 400000
(∼ 13%)

∼ 3000
(∼ 1.15%) 98.33% 3.33%

Booter 4 ∼ 320000
(∼ 10%)

∼ 2800
(∼ 1.08%) 98.33% 2.50%

Booter 6 ∼ 450000
(∼ 15%)

∼ 7000
(∼ 2.69%) 100% 9.17%

(τ = 0.0306)Booter 7 ∼ 170000
(∼ 5%)

∼ 5800
(∼ 2.23%) 68.33% 8.33%

CAIDA2016

Booter 1 ∼ 400000
(∼ 16%)

∼ 3000
(∼ 2.00%) 100% 14.16%

Booter 4 ∼ 320000
(∼ 13%)

∼ 2800
(∼ 1.86%) 100% 14.16%

Booter 6 ∼ 450000
(∼ 18%)

∼ 7000
(∼ 4.66%) 100% 36.67%

(τ = 0.0285)Booter 7 ∼ 170000
(∼ 7%)

∼ 5800
(∼ 3.86%) 96.67% 30.83%

CAIDA2018

Booter 1 ∼ 400000
(∼ 17%)

∼ 3000
(∼ 1.57%) 95.83% 6.67%

Booter 4 ∼ 320000
(∼ 14%)

∼ 2800
(∼ 1.47%) 86.67% 6.67%

Booter 6 ∼ 450000
(∼ 19%)

∼ 7000
(∼ 3.68%) 98.33% 10.83%

(τ = 0.0380)Booter 7 ∼ 170000
(∼ 8%)

∼ 5800
(∼ 3.05%) 49.16% 9.16%

section, we consider DDoS attack traffic in the real world,
namely Booter. Booter services [26] are on-demand services
that provide support for illegal users to launch DDoS attacks
targeting websites and network servers. We picked four UDP-
based DNS amplification attack flow traces (i.e. Booter 1, 4,
6, 7 collected from a 10Gbps link) that can better reflect the
difference between our CARBINE and the existing solution
[18]. The attack traffic volume in each flow trace is greater
than 100Mbps, which is the most common metric to determine
a volumetric DDoS attack [27]. The existing solution, for
short we name it SHLL, used two HyperLogLog registers with
different hash functions to check if the relative error of them
is greater than a threshold. The relative error proved by SHLL
approximately follows a normal distribution N (0, 1

m1
+ 1

m2
),

where m1 and m2 are the size of two HyperLogLog registers.
Hence, similar to our approach, the threshold can also be
chosen as w times of the standard deviation

√
1

m1
+ 1

m2
. For

a fair comparison, both HyperLogLog register size m1 and m2

in SHLL are set to 210, and w is 2. Therefore, the detection
threshold in SHLL is 2 ·

√
2−10 + 2−10 = 0.09. We captured

120 5-seconds long of packets from DDoS attack flow traces
according to their timestamps, and inserted the packets into
our testing CAIDA flow traces depending on the time interval
index. The properties of captured DDoS traces are reported
in Table.II and Table.III. Since the theoretical false positive
rate of both approaches is 5%, we only focus on comparing
the true positive rate DTP . The same as last subsection, all
packets in the attack traffic are hashed with v(x) = 1. The
first HyperLogLog register in both CARBINE and SHLL uses
xxhash with seed 1, while the second of them uses the same
hash function with seed 2. Initially, as shown in Table.II, we



TABLE IV: Average update speed in 50 times of tests
Performance Algorithm # Distinct items (× 1024)

102 103 104 105

Update speed
(Mups)

HyperLogLog 13.68 13.43 13.13 12.87
CARBINE 13.85 13.62 13.36 13.05

used 5 tuple as the flow key, the true positive rate Dtp of
both CARBINE and SHLL keeps 100% when CAIDA 2019
trace under the attack of Booter 4, 6, and 7 (attack traffic
greater than 20% of legitimate traffic). For Booter 1, the Dtp

of CARBINE remains 100%, but that of SHLL is only 50%.
This is because the distinct flows in attack traffic of Booter
1 is only approximately 7% of legitimate traffic, which is
the lowest among all attack traffic. This tells us that SHLL
has good performance on detecting evasion attacks only when
the number of distinct flows in the attack traffic is large. The
attacks on CAIDA 2016 and 2018 behave the same as those
in CAIDA 2019, and we omitted the detailed results of the
other two flow traces for conciseness.

However, as shown in Table.III, when the considered flow
keys in HyperLogLog are {srcIP, dstIP} pairs, SHLL cannot
effectively detect potential attacks any more. This table indi-
cates that the performance of SHLL depends on not only the
number of flows in attack traffic but also the flow cardinality
in legitimate traffic. The true positive rate of SHLL becomes
even worse since the number of flows in the normal traffic is
larger, and the percentage of attack flows is relatively smaller.
The performance of CARBINE becomes slightly worse when
we switch the flow key from 5 tuple to {srcIP, dstIP} due to the
small increase of τ , but it still completely outperforms SHLL
especially when the attack traffic packets percentage is greater
than 10%, CARBINE outperforms SHLL. In CAIDA 2016,
even though the proportion of attack traffic volume is only
7%, due to the low variance of this flow trace, both CARBINE
and SHLL can perform relatively high true positive rate than
that of the other two flow traces.

This demonstrates that, for M2 threats, CARBINE has good
detection performance on DDoS attacks with large attack
traffic volume (≥ 10% of legitimate traffic) or large number
of distinct flows, while SHLL is only able to detect DDoS
attacks if the attack packets are categorized with fine-grained
flow keys (e.g. 5 tuple).

E. Evaluation of update speed

We additionally implemented HyperLogLog and CARBINE
in C language and measured their speed in a server with two-
core Intel(R) Xeon(R) Gold 6234 CPU 3.30GHz and 376GB
RAM. We used two HyperLogLogs in CARBINE, but the
results of a HyperLogLog do not rely on the other. Therefore,
they can be updated in parallel using multiple CPU logical
cores, and clearly this will not be the speed bottleneck of
CARBINE if enough CPU resource is assigned. As reported
in Table IV, the average million updates per second (Mups)
in 50-times tests of both algorithms decreases as the number
of distinct items increases. This is because more distinct items
lead to more updates in the register when v(x) > Mj . Since
(i.) comparing v(x) to the real-time minimum kmin and base
maximum kbasemax can filter out a large number of unnecessary
accesses to HyperLogLog and (ii.) no register scan is required
to retrieve kmin and kbasemax, CARBINE performs even higher

update speed than HyperLogLog when varying the number of
distinct items, i.e., approximately 0.2 million more items can
be processed in a second.

V. RELATED WORK

Sketch-based flow cardinality estimation for monitoring
Many sketch-based algorithms for estimating the cardinality
of data streams have been proposed in literature, including
Linear Counting [28], Multiresolution Bitmap [29], PCSA
[30], LogLog [19] and HyperLogLog [13]. Estimating the car-
dinality of large network data streams using sketches directly
in the server has become an appealing solution to enhance
network monitoring due to its low memory occupation and
high accuracy. It has been proven that HyperLogLog is able
to achieve the same accuracy as other methods but requires
much less memory, which has been widely used in many query
engines for big network data, including Redis [14], Spark [16],
and Presto [15]. Intuitively, using aforementioned Sketches is
efficient to monitor the number of active flows on a high speed
link. In addition, many recent works [31] [5] [32] [12] use
them to identify network anomalies: a sudden large increase of
distinct flows (i.e. connections) targeting a specific destination
host may indicate that a DDoS attack is taking place. Similarly,
the superspreaders [33] [34] (e.g. worm propagation [35]) can
be identified if the same source host is contacting a significant
number of destination hosts.
Security and robustness of HyperLogLog While existing
works focus on the improvement of the accuracy [36] or
memory efficiency [37] of HyperLogLog, how to protect
HyperLogLog is becoming a new challenge. Reviriego et
al. [18] recently investigated the evasion attack (M2 threat)
of HyperLogLog and proposed a method to detect such a
kind of attack by comparing two estimations queried from
two HyperLogLog registers using different hash functions. If
the relative error of two estimations is larger than a given
threshold, then the evasion attack is considered as taking
place. However, this comes with a limitation: their approach
is effective only when the flow number of attack traffic
is large. Paterson et al. [22] comprehensively analyzed the
potential security issues of HyperLogLog, but they did not
provide any sufficient solutions to defend against them. Our
CARBINE overcomes the constraints of HyperLogLog from
an algorithmic perspective: CARBINE not only can effectively
detect attacks evading increments in HyperLogLog, but also
can pro-actively filter out inflating attacks without sacrificing
any estimation accuracy or update speed of HyperLogLog.

VI. CONCLUSION

In this paper, we started with the theoretical analysis of
HyperLogLog and explored its additional properties. We then
studied two possible threats of HyperLogLog, and proposed
corresponding solutions leveraging explored new properties.
Considering proposed solutions as building blocks, we present
CARBINE, a novel approach that improves the security and ro-
bustness of HyperLogLog while increasing the estimation ac-
curacy and update speed. The findings indicate that CARBINE
can proficiently identify potential threats, such as volumetric
DDoS attacks using evasion techniques, thereby safeguarding
HyperLogLog.
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