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Abstract—The evaluation of network traffic entropy is very
useful for management purposes, since it helps to keep track
of changes in network flow distribution. Nowadays, network
traffic entropy is usually estimated in centralized monitoring
collectors, which require a significant amount of information to
be retrieved from switches. The advent of programmable data
planes in Software-Defined Networks helps mitigate this issue,
opening the door to the possibility of estimating entropy directly
in the switches’ data plane. Unfortunately, the most widely-
adopted programming language used to program the data plane,
called P4, lacks supporting many arithmetic operations such
as logarithm and exponential function computation, which are
necessary for entropy estimation. In this paper we propose two
new algorithms, called P4Log and P4Exp, to fill this gap: these
algorithms can estimate logarithms and exponential functions
with a given precision by only using P4-supported arithmetic
operations. Additionally, we leverage them to propose a novel
strategy, called P4Entropy, to estimate traffic entropy entirely
in the switch data plane. Results show that P4Entropy has
comparable accuracy as an existing solution but without (i)
constraining the number of packets in an observation interval
and (ii) requiring the usage of TCAM, which is a scarce resource.

I. INTRODUCTION

For the purpose of management, network operators need
to constantly monitor the status of the network and ensure
that it behaves as intended. Network traffic distribution is
an important indicator to understand the network behavior:
the most widely-used metric to evaluate traffic distribution is
entropy [1]. A periodical tracking of this metric helps diagnose
performance and security issues, by supporting the execu-
tion of tasks such as congestion control [2], load balancing
[3], port-scan detection [4][5], distributed denial-of-service
(DDoS) attacks detection [6][7] and worm detection [8].

However, both in SNMP-based [9] legacy networks and
in more recent Openflow-based [10] Software-Defined Net-
works, all these entropy-based monitoring applications are
executed in a centralized component (generally known as
monitoring collector or, more widely, controller) requiring
the transmission, storage and processing of a huge amount
of statistical information on active network flows from the
network data plane [10]. This comes with two well-known
drawbacks [11]: (i) a significant communication overhead is
generated between data and centralized monitoring/control
planes and (ii) significant processing capabilities are needed
by the collector, with the risk of affecting performance of

monitoring and network operations if involved parties are not
well-dimensioned.

The recent advent of so-called (data-plane) programmable
switches allows network operators to partially overcome those
drawbacks. In fact, programmable switches can execute some
network monitoring operations directly in their data plane
pipeline (if appropriately programmed) and deliver to the
centralized monitoring/control plane only processed informa-
tion: potentially, this enables the computation of network
traffic entropy directly in the switches’ data plane and the
sole forward of the resulted entropy value to the collector.
However, data-plane programming comes with some inher-
ent limitations: the most well-established and widely-adopted
data-plane programming language, called P4 [12], does not
allow the usage of loops (e.g. for or while). Additionally,
it does not support some basic arithmetic operations such
as division, logarithm and exponential function calculation,
as well as any operation on floating numbers. Unfortunately,
all these operations are needed for entropy computation. A
straightforward solution to overcome these limitations could
be executing all arithmetic operations unsupported by the P4
language at the collector, but this would almost nullify the
benefits of the proposed solution as discussed so far.

The goal of this paper is to exploit P4 data-plane program-
ming features to estimate network traffic entropy entirely in the
switch data plane. As our network traffic entropy estimation
strategy relies on the calculation of logarithm and division, we
first propose a novel algorithm for the estimation of logarithm,
called P4Log, that only uses arithmetic operations supported
by the P4 language. Moreover, since division operation A

B can
be expressed as 2log2 A−log2 B , we propose another algorithm,
called P4Exp, for the estimation of exponential functions
with real-number exponent. When combined with P4Log,
P4Exp can be used for the computation of divisions. Based
on these two algorithms, we then present a novel strategy,
named P4Entropy, to disclose network traffic distribution by
leveraging Shannon entropy [13] computation. A prototype of
P4Entropy has been implemented in P4 behavioral model [14]
and has been proven to be fully executable in a P4 emulated
environment.

We then evaluate P4Log, P4Exp and P4Entropy by means of
simulations to show their effectiveness and their sensitivity to
different tuning parameters. Results show that our algorithms
can ensure similar relative error as state-of-the-art solutions978-1-7281-4973-820$31.00 © 2020 IEEE



[6][15] that leverage on ternary Match+Action (M+A) tables to
store some pre-computed values for estimation. The advantage
of our strategies with respect to the state of the art is three-fold.
First, our approach avoids the usage of any M+A table: this is
especially beneficial to save memory consumption of TCAM
(which is used to store ternary M+A tables but is limited,
power-hungry and expensive). Additionally, our approach does
not require any interaction with the control plane in executing
the foreseen operations. Conversely, state-of-the-art solutions
require that M+A tables are properly populated by a controller,
generating some communication overhead: this is why we
claim that our strategies work entirely in the data plane.
Finally, our P4Entropy algorithm overcomes another limitation
of the state-of-the-art benchmark strategy: while the existing
strategy needs to set a fixed observation window on the number
of processed packets to compute network traffic entropy,
our approach allows to set as observation window any time
interval, regardless of the number of processed packets. This
is useful in the case estimated entropy values from multiple
switches must be sent to the collector in a synchronized way.

The remainder of the paper is organized as follows. In
Section II we report background notions. Section III describes
P4Log and P4Exp, while Section IV describes P4Entropy.
Sections V and VI present evaluation results and comparisons
with existing solutions. In Section VII, we recall the related
work. Finally, Section VIII concludes this paper and sets the
future work.

II. BACKGROUND

In this section we recall background concepts needed to
understand the strategies proposed in the following sections.

A. Network traffic entropy

Network traffic entropy [1] gives an indication on traffic
distribution across the network. Each network switch can eval-
uate the traffic entropy related to the network flows that cross
it in a given time interval Tint. Relying on the definition of
Shannon entropy [13], network traffic entropy can be defined
as H = −

∑n
i=1

fi
|S|tot logd

fi
|S|tot , where fi is the packet count

of the incoming flow i, |S|tot is the total number of processed
packets by the switch during Tint, n is the overall number of
distinct flows and d is the base of logarithm. Traffic entropy
reaches H = 0 when in Tint all packets |S|tot belong to the
same flow i, while it reaches its maximum value H = logd n
when each of the n flows i transports only one packet.

B. Hamming weight computation

Hamming weight represents the number of non-zero values
in a string. In a binary string, the Hamming weight indicates
the overall number of ones. For example, given the binary
string 01101, the Hamming weight is 3. Hamming weight
can be computed by means of different algorithms: as part of
P4Log, in this paper we adopt the Counting 1-Bits algorithm
presented in [16], as it only relies on bitwise operations that
are completely supported by P4 language [17].

TABLE I
OPERATIONS SUPPORTED BY P4 AND THEIR SYMBOLS [17]

Symbol Operation
+ Addition
− Subtraction
· Multiplication
� Logical right shift (Division by power of two)
� Logical left shift (Multiplication by power of two)
ˆ Bitwise XOR
| Bitwise inclusive OR
& Bitwise inclusive AND
∼ Bitwise COMPLEMENT

C. Binomial series expansion of exponential function 2x

The proposed P4Exp algorithm relies on binomial series
expansion [18] of 2x, where x is a real positive number. In
general, the binomial series expansion of (1 + α)x is defined
in the following way:

(1 + α)x =

+∞∑
k=0

(
x
k

)
αk

When α = 1 we have the binomial series expansion of 2x:

2x =

+∞∑
k=0

(
x
k

)
= 1 + x+

x(x− 1)

2!
+ · · ·︸ ︷︷ ︸

Nterms

With α = 1, the series converges absolutely iff Re(x) > 0 or
x = 0. In our case this always holds, since x is a real positive
number. In P4Exp we will rely on a truncation of the binomial
series to the first Nterms terms.

D. Sketch-based estimation of flow packet count
Estimating the number of packets for a specific flow cross-

ing a programmable switch (fi) is fundamental for network
traffic entropy computation. Such an estimation can be per-
formed by means of sketches [19], which are probabilistic
data structures associated to a set of pairwise-independent hash
functions. The size of each sketch data structure depends on
the number of associated hash functions Nh and on the output
size of each function Ns, and is Nh×Ns. Update and Query
operations are used to store and retrieve information from the
sketch: Update operation is responsible for updating the sketch
to keep track of flow packet counts, while Query operation
retrieves the estimated number of packets for a specific flow.
Two well-known algorithms to Update and Query sketches
are Count-min Sketch [20] and Count Sketch [21]. A detailed
theoretical analysis on the accuracy/memory occupation trade-
off for these sketching algorithms is reported in [20][21].
From a high-level perspective, as any of Nh and Ns increase,
memory consumption is larger but estimation is more accurate.
Count Sketch leads to a better accuracy/memory consumption
trade-off than Count-min Sketch, but its update time is twice
slower [22].

III. ESTIMATION OF LOG AND EXP FUNCTIONS IN P4
In this section, we propose P4Log and P4Exp, two new

algorithms for the estimation of logarithm and exponential
function that leverage only arithmetic and logical operations
supported by the P4 language (see Table I) and can be executed
entirely in the data plane. The P4 code of two algorithms is
open sourced in [23].



Algorithm 1: P4Log algorithm
Input: An L-bit integer x (L ∈ {16, 32, 64, 128}) and a given

logarithmic base d
Output: An L-bit integer estimation of logd x amplified 210

times (logd x · 210 ≡ logd x� 10)
1 Function log2ES(x):
2 w ← x|(x� 1)
3 for int i ∈ {1, . . . , log2 L− 1} do
4 w ← w|(w � 2i)

5 b← HammingWeight(w)
6 n← b− 1

7 log2 x� 10← n� 10 + log2(1 +
x̄− 2Nbits

2Nbits
)� 10︸ ︷︷ ︸

Tree search →Ndigits

8 return log2 x� 10

9 Function logdES(x, logd 2� 10):
10 logd x� 10← (log2ES(x) · logd 2� 10)� 10
11 return logd x� 10

A. P4Log algorithm

Given an L-bit integer x and a logarithmic base d, the goal
is to estimate logd x. Since operations on floating numbers
are forbidden in P4, our algorithm computes logd x amplified
by 210 times (i.e, logd x · 210). This amplification (similar to
what is done in [6]) is performed to deal with integer numbers
without loosing accuracy on decimal parts, and can be done
using the left shift operator (�). This is needed because P4, in
the case of operations resulting in floating numbers, truncates
the resulting value to its integer part: without any amplification
our algorithm (as any other algorithm dealing with floating
numbers) would result in a very bad estimation accuracy.

To compute logd x, we can write it as logd x = log2 x ·
logd 2. Since d is known, logd 2 is a constant value that can be
pre-computed and loaded in the P4 program. Thus, logarithm
estimation in P4 language reduces to the estimation of log2 x:
if we can estimate log2 x, then it is always possible to estimate
the logarithm of an input value x with any given base d, as far
as the constant value logd 2 has been stored in the P4 program
as a constant.

As shown in Algorithm 1, the algorithm first estimates
log2 x (log2ES(x) function). Initially, it computes the integer
part of log2 x, which is equal to the index of leftmost 1 of x
when expressed in binary notation. To get this information, all
bits at the right of leftmost 1 of x are iteratively converted to
1 and the result is stored in a binary string named w (Lines 2 -
4). For instance, given a binary value 010010, the resulted w is
011111. This operation is needed because, in P4, numbers are
always handled in decimal notation, while we need a binary
string as input of the next step. Then, the Hamming weight of
w (see Section II-B) is retrieved, indicating the number of bits
from the leftmost 1 (including itself) and denoted by b (Line
5). Hence, the index of the leftmost 1, called n and equal to
b− 1, stores the integer part of log2 x (Line 6).

The algorithm then estimates the decimal part. Note that
log2 x = n+ log2(1 + x−2n

2n ), meaning that the estimation of
the decimal part reduces to the estimation of log2(1 + x−2n

2n ).
We adopt the first Nbits bits starting from the leftmost 1

x̄ = 1 ∗ ∗

x̄ = 10∗ x̄ = 11∗

x̄ = 100 x̄ = 101 x̄ = 110 x̄ = 111

x < xˆ(x� 1) x > xˆ(x� 1)

x < xˆ(x� 2) x > xˆ(x� 2) x < xˆ(x� 2) x > xˆ(x� 2)

0� 10 0.322� 10 0.585� 10 0.807� 10

Fig. 1. Binary-tree data structure to extract the first Nbits = 2 bits of x̄ and
retrieve the estimated decimal part (Ndigits = 3)

to estimate it, using a set of pre-computed decimal values
stored in the P4 program as constants and rounded to a float
with Ndigits digits of precision. If Nbits bits are used to
estimate the decimal part, it means that 2Nbits constants need
to be pre-computed and stored in the program. We call x̄
the binary sub-string used to estimate the decimal part. For
example, considering Nbits = 2, there are four possible cases:
x̄ ∈ {100, 101, 110, 111} (the leftmost 1 is always included
in the sub-string). With Ndigits = 3, each of the four cases
leads to the following different estimations of the decimal part,
computed as log2(1 + x̄−2Nbits

2Nbits
):

x̄ = 100 =⇒ log2(1 +
(000)2

(100)2
) = log2(1 +

0

4
) = 0

x̄ = 101 =⇒ log2(1 +
(001)2

(100)2
) = log2(1 +

1

4
) ≈ 0.322

x̄ = 110 =⇒ log2(1 +
(010)2

(100)2
) = log2(1 +

2

4
) ≈ 0.585

x̄ = 111 =⇒ log2(1 +
(011)2

(100)2
) = log2(1 +

3

4
) ≈ 0.807

The greater Nbits and Ndigits are, the more accurate the
estimation of the decimal part is. However, the bigger Nbits

is, the more pre-computed constants must be stored. Note also
that, if n < Nbits, the algorithm performs zero padding.

Unfortunately, for the same limitation of P4 recalled above,
retrieving the x̄ binary sub-string is not straightforward. How-
ever, by iteratively comparing x with xˆ(x � j), where
j ∈ {1, . . . , Nbit} (integer), it is possible to obtain the string
x̄ and get the associated estimated decimal part. In fact, if
x < xˆ(x � j), it means that the (j + 1)-th bit of x̄ is 1,
otherwise it is 0, being the first bit always 1 by definition.
To this aim, we can define a binary tree in the P4 program
by using 2Nbits − 1 if-else statements. An example of such
a binary tree, in the case Nbits = 2 and Ndigits = 3, is
shown in Fig. 1. As shown in the figure, the constant decimal
values are amplified 210 times to ensure that they are integer
numbers. Once the decimal part is retrieved, it is added to
n (also amplified 210 times) to get an integer (amplified)
estimation of log2 x. All these operations are summarized in
Line 7 and 8 of Algorithm 1. Finally, the amplified estimated
value of log2 x (output of log2ES(x)) is used to estimate



logd x (logdES(x, logd 2� 10) function). The constant value
logd2 is stored amplified 210 times to prevent it being a floating
number. For this reason, the result of log2 x·logd 2, where both
terms are amplified 210 times, requires a division by 210 to
obtain an estimation of logd x still amplified 210 times. This
can be done using the right-shift operator (�) (Lines 10-11).

B. P4Exp algorithm

Given an L-bit integer x and an exponent d, the goal is
to estimate an integer approximation of xd, with d being any
real number (expdES(x, d) function). Since xd = 2d log2 x, xd

first requires the estimation of log2 x by means of P4Log, and
then the computation of 2y where y = d log2 x. Our initial
idea was to calculate 2y by executing 1 � d log2 x in P4
language [17]. Unfortunately, in our case it is not possible
to do so. In fact, the output of log2ES(x) in Algorithm 1
is the estimation of log2 x amplified 210 times (to prevent
accuracy losses) and 2y cannot exceed L bits (2L − 1 is the
biggest possible value), otherwise the computed number is set
to 0 by P4. To ensure that the estimated 2y value does not
exceed L bits, the exponent y cannot be bigger than log2 L.
Considering the biggest possible value for L, i.e., L = 128,
the inequality d log2 x · 210 < 128 holds only in the case that
d log2 x < 2−3, which is still a too small value to make this
approach meaningful.

To work around such a limitation, the algorithm decomposes
d log2 x = eint+edec, where eint is its integer part and edec is
its decimal part, meaning that xd = 2eint ·2edec . P4Exp initially
stores the result of log2ES(x) (i.e., log2 x � 10) multiplied
by d in an integer variable called exp� 10 (Line 2). Note that
the decimal part of the product is neglected and that this is the
amplified version of the exponent. eint (not amplified) is then
calculated by computing exp � 10, leveraging the limitation
of P4 that a resulting floating number is always truncated to
its integer part (Line 3). The algorithm then computes the
amplified version of edec as difference between the amplified
versions of exp and eint (Line 4). The estimated amplified
version of 2edec is retrieved by truncating its binomial series
expansion to the first Nterms terms (see Section II-C). All
constants in the binomial series expansion need to be amplified
by 210 times. The inverse of the factorial number v! in the
binomial series can be estimated by b 210

v! c � 10, where b 210

v! c
is a pre-computed constant in the P4 program. For example,
1
2! = 1

2 can be computed by b 210

2 c � 10 = 512� 10 = 1
2 . As

Nterms increases, more and more multipliers are amplified 210

times, with the risk of going out of the L-bit range. Thus, the
algorithm right-shifts 10 bits after each multiplication in the
polynomial: this ensure that the resulted 2edec is only amplified
210 times. Lines 5-7 reports the estimation of 2edec � 10 with
Nterms = 3.

Since computed values larger than 2L − 1 are set to 0, it
must be ensured that xd will not be out of range for reasonable
values of d. Thus, in the case eint < 10 (small integer part),
xd is estimated by calculating 2eint (not amplified and smaller
than 210), multiplying it by 2edec (amplified as computed
above) and dividing it by 210, to get a non-amplified integer
approximation (Lines 8-9). Conversely, for eint ≥ 10 integer

Algorithm 2: P4Exp algorithm
Input: An L-bit integer x (L ∈ {16, 32, 64, 128}) and a given

exponent d
Output: An L-bit integer approximation of xd

1 Function expdES(x, d):
2 exp� 10← d · log2ES(x)
3 eint ← exp� 10
4 edec � 10← exp� 10− eint � 10
5 2edec � 10← (1� 10) + edec � 10
6 +(edec � 10 · (edec � 10− (1� 10))

7 � 10 · b 2
10

2!
c)� 10 + · · ·︸︷︷︸

until Nterms

(Binomial series expansion)

8 if eint < 10 then
9 xd ← ((1� eint) · (2edec � 10))� 10

10 else
11 xd ← (1� (eint − 10)) · (2edec � 10)

12 return xd

parts, the algorithm compensates the 210-times amplification
of 2edec by computing 2eint−10 and multiplying it by the
amplified version of 2edec (Lines 10-11). Reducing the size
of the exponent of eint by a factor of 10 helps prevent xd

being out of range.

IV. NETWORK TRAFFIC ENTROPY ESTIMATION

Based on proposed P4Log and P4Exp algorithms in Section
III, we propose a new strategy, named P4Entropy, to estimate
the network traffic entropy entirely in the programmable
switches’ data plane. The prototype of P4Entropy has been
implemented in P4 behavioral model [14] and is executable in
an emulated environment as Mininet [24]. The source code is
available in [25]. Formally, the problem is defined as follows.

Problem definition: Given a stream of incoming packets S
in a switch and a time interval Tint, returns Shannon entropy
estimation (see Section II-A) at the end of Tint.

A. Derivation of estimated entropy in P4
The goal of this section is to provide an estimation of

network traffic entropy by only using P4-supported arithmetic
operations and reducing as much as possible their number. The
section also shows how relevant statistics, used for entropy
estimation at the end of Tint, are iteratively updated every
time a packet crosses the switch.

We first rewrite the Shannon entropy in the following way:

H(|S|tot) = −
n∑

i=1

fi(|S|tot)
|S|tot

logd

fi(|S|tot)
|S|tot

= logd |S|tot −
1

|S|tot

n∑
i=1

fi(|S|tot) logd fi(|S|tot)

We consider d = 2 without any loss of generality. With respect
to the definition given in Section II-A, we use the notation
fi(|S|tot) to make explicit that fi refers to its value when
|S|tot packets have been received (i.e., at the end of Tint). As
packets arrive in the switch, the overall number of processed
packets |S| increases and must be stored in the switch to ensure
that H(|S|tot) can be computed at the end of Tint, when |S| =
|S|tot. We define Sum(|S|) =

∑n
i=1 fi(|S|) logd fi(|S|),

which must be updated as well. To understand how to update



Sum(|S|), let’s assume that a new packet for a specific flow
arrives and is the |S|-th packet. We call its packet count
f̄i(|S|). It holds that:{

fi(|S|) = fi(|S| − 1) (fi(|S|) 6= f̄i(|S|))
fi(|S|) = fi(|S| − 1) + 1 (fi(|S|) = f̄i(|S|))

This allows us to re-write Sum(|S|) in the following way:

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|) +

− (f̄i(|S|)− 1) log2(f̄i(|S|)− 1)

Sum(|S|) thus needs two logarithmic computations for each
incoming packet, and would require running P4Log twice with
corresponding computational effort. In the next step, we show
how it is possible to estimate Sum(|S|) with only (at most)
one logarithmic computation. When f̄i(|S|) = 1, we estimate
Sum(|S|) = Sum(|S| − 1), being f̄i(|S|) log2 f̄i(|S|) =
1 log2 1 = 0 and defining (f̄i(|S|) − 1) log2(f̄i(|S|) − 1) =
0 log2 0 = 0 [26]. Instead, when f̄i(|S|) > 1, we need to
re-write once again Sum(|S|) in the following way:

Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) +

+ (f̄i(|S|)− 1) log2(1 +
1

f̄i(|S|)− 1
)

According to L’Hopital’s rule [27]:

lim
f̄i(|S|)→+∞

(f̄i(|S| − 1) log2 (1 +
1

(f̄i(|S| − 1)
) =

1

ln2

Thus, we set 1/ln2 ≈ 1.44 as the approximation of the third
term of Sum(|S|). This approximation best works when most
of the flows in Tint carry a number of packets much greater
than 1 (as usually happens in an ISP backbone network, which
is the most suitable scenario where to apply our strategy).
Finally, Sum(|S|) can be estimated as:

Sum(|S|) ≈

{
Sum(|S| − 1) (f̄i(|S|) = 1)

Sum(|S| − 1) + log2 f̄i(|S|) + 1/ln2

(f̄i(|S|) > 1) (1)
This estimation requires at most one logarithm computation.

Since P4 language does not support division, we re-write
1
|S|tot = 2− log2 |S|tot . So, entropy can be written as:

H(|S|tot) = log2 |S|tot − 2(log2 Sum(|S|tot)−log2 |S|tot)

In this form, entropy can be estimated by only using P4-
supported operations, leveraging P4Log and P4Exp algo-
rithms. In the following, we show how it is possible to further
slightly reduce complexity in entropy estimation.

When |S|tot =
∑n

i=1 fi(|S|tot) > Sum(fi|Stot|), it holds
that 0 < 2(log2 Sum(|S|tot)−log2 |S|tot) < 1. This is a corner
case that happens only when flow distribution is almost
uniform (i.e., when most of flows carry only one or very
few packets). In this case, we neglect the computation of
2(log2 Sum(|S|tot)−log2 |S|tot), meaning that we estimate entropy
as flow distribution was perfectly uniform. Network traffic
entropy can then finally be estimated as follows:

H(|S|tot) ≈
{

log2(|S|tot) (|S|tot > Sum(|S|tot))
log2(|S|tot)− 2(log2 Sum(|S|tot)−log2 |S|tot)

(|S|tot ≤ Sum(|S|tot)) (2)

Packet
stream S

Update
counter
|S|

At the end of Tint
(|S| = |S|tot)

{srcIP, dstIP}i

Update / Query Sketch

Update
Sum(|S|)

(Eq. 1)

f̄i(|S|)

Estimate Entropy H(|S|tot) (Eq. 2)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

Controller

Report H(|S|tot)

Fig. 2. Scheme of P4Entropy

Algorithm 3: P4Entropy algorithm
Input: Packet stream S, time interval Tint

Output: Entropy estimation H(|S|tot) of S in Tint

1 |S| ← 0
2 Sum(|S|)← 0
3 Function UpdateSum:
4 while currentTime < Tint do
5 for Each received packet belonging to flow i do
6 |S| ← |S|+ 1
7 f̄i(|S|)← Sketch({srcIP, dstIP}i)
8 if f̄i(|S|) > 1 then
9 Sum(|S|)� 10← Sum(|S|)� 10

10 +log2ES(f̄i(|S|)) + 1.44� 10

11 Sum(|S|tot)← (Sum(|Stot|)� 10)� 10
12 return Sum(|S|tot), |S|tot
13 Function EstimateEntropy(Sum(|S|tot), |S|tot):
14 if currentTime = Tint then
15 if |S|tot > Sum(|S|tot) then
16 H(|S|tot)� 10← log2ES(|S|tot)
17 else
18 diff← log2ES(Sum(|S|tot))− log2ES(|S|tot)
19 H(|S|tot)� 10←log2ES(|S|tot)−expdES(2, diff)

20 return H(|S|tot)� 10

B. P4Entropy algorithm

Figure 2 and Algorithm 3 show the scheme and pseudocode
of P4Entropy algorithm, leveraging outcomes from Section
IV-A. First, the algorithm continuously updates Sum(|S|)
until the end of Tint (UpdateSum function) with flow in-
formation from incoming packets. A counter |S| is used to
count all incoming packets in the switch. We consider as
flow key the source IP-destination IP pair of the packet, with
i ∼ {srcIP, dstIP}i. However, other flow definitions could
be considered (e.g. 5-tuple) without any loss of generality.
A sketch data structure (e.g., Count Sketch or Count-min
Sketch, see Section II-D) is used to store the estimated packet
count for all the flows, being continuously updated to include
information from new packets, and then it is queried to retrieve
the estimated packet count f̄i(|S|) for the flow i the current
incoming packet belongs to. This value is then passed to a
readable and writable stateful register named Sum(|S|), which
is updated as specified in Eq. 1. All the floating numbers in the
equation must be amplified 210 times, since P4Log outputs an



TABLE II
DEFAULT PARAMETERS FOR P4LOG AND P4EXP

Alg Parameter Value

P4Log Digits of precision for decimal part (Ndigits) 3
Number of bits for estimation of decimal part (Nbits) 4

P4Exp
Digits of precision in log2ES(x) (Ndigits) 3

Number of bits in log2ES(x) (Nbits) 7
Number of terms in binomial series (Nterms) 7

amplified integer value. Only at the end of Tint, Sum(|S|tot)
is reduced by a factor of 210 and its final value, together with
|S|tot, is returned (Lines 1-12 of the pseudocode).

Traffic entropy is then estimated as specified in Eq. 2.
The resulted value of H(|S|tot) is amplified 210 times since
output values of P4Log are amplified, while output values
of P4Exp are not. Finally, the switch reports the amplified
entropy estimation value to the controller, which can reset all
the switch registers to start another estimation in the next Tint.

V. EVALUATION OF P4LOG AND P4EXP

We implemented P4Log and P4Exp in Python for evaluation
and sensitivity analysis, reported in this section.

A. Evaluation metrics and settings

1) Metrics: We consider relative error as key metric. For
P4Log, given an input value x and base d, relative error is
defined as |logdES(x,logd 2)−logd x|

logd x · 100%, where logd x is the
exact value. For P4Exp, given input base x and exponent d,

the relative error is defined as |expdES(x,d)−xd|
xd ·100%. In both

cases, we consider as acceptable target a relative error of 1%,
as also done in previous work [15].

2) Default experimental settings: Unless otherwise speci-
fied, the default tuning parameters in all experiments are the
ones reported in Table II.

3) Testing values for P4Log: When using Nbits to estimate
the logarithm in our P4Log algorithm, all the bits after them
are ignored and considered as 0. Intuitively, the algorithm
leads to worst-case estimations when most significant bits after
Nbits are 1s. To make it as general as possible, we choose five
different l-bit-length (i.e., l = 4, 8, 16, 32, 64 bit) input values
where all bits are 1s (and thus the respective decimal value is
2l − 1). Moreover, we always consider d = 2 as logarithmic
base since, as shown in Section III-A, different bases only
require the multiplication of log2 x with the constant value
log2 d, and this operation does not affect the relative error
to the exact value. We also randomly select 5 · 106 integer
numbers such that x ∈ {1, 264 − 1} and average the relative
error in logarithm estimation, named AVG in the following.
With 5 · 106 randomly-selected number, 95% confidence-
interval width of relative error is always smaller than 0.01%,
and we do not plot it in shown graphs since it would overlap
with the plotted markers.

4) Testing values for P4Exp: In this case, we evaluate the
performance of the algorithm when both base and exponent
of xd vary. We choose input values according to the following
rules: (i) to evaluate the impact of base variation, we fix a
64-bit integer base x to a chosen value, then we find the
integer exponent d that maximizes the output xd within 64
bits (we call this test chosen-base variation); (ii) to evaluate
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Fig. 3. Sensitivity of P4Log to Nbits (a) and Ndigits (b)

the impact of exponent variation, we fix the integer exponent d
to a chosen value, then we find the largest 64-bit integer base
x that maximizes the output xd within 64 bits (we call this
test chosen-exponent variation); (iii) we select 5 · 106 integer
numbers with base x ∈ {1, 232−1} and exponent d ∈ {2, 32}
both randomly chosen (these ranges ensure that xd is always
within 64 bit) and average the relative error in exponential
function estimation, named AVG in the following. Also in this
case, 95% confidence interval has a width smaller than 0.01%
and is not plotted in the graphs.

B. Evaluation of P4Log

Figure 3 shows the sensitivity of P4Log with respect to
a variation of Nbits and Ndigits. As shown in Fig. 3(a), the
relative error of log2 x decreases as Nbits increases, with more
significant improvement when the input value x is small. When
Nbits = 4, the relative error is below 1% in all the considered
cases, becoming almost 0 when Nbits = 6. Instead, Fig. 3(b)
shows that (i) an increase of Ndigits does not improve much
the relative error, (ii) all relative errors are below 1% and (iii)
when Ndigits = 4 the relative error reaches its minimum. The
AVG curve always shows an average relative error below 1%.

C. Evaluation of P4Exp

We analyze the sensitivity of P4Exp with respect to a varia-
tion of Nbits and Ndigits of Log2ES(x) used for exponential
estimation (see Algorithm 2) and to a variation of Nterms.

1) Sensitivity to Nbits: As shown in Fig. 4(a), in the case
of chosen-base variation, when Nbits ≥ 3 all the relative
errors of considered xd are under 1%. When Nbits is too
small (Nbits = 2) a very large relative error (around 80%)
is experienced for bases x ≥ 9. This is because a small Nbits

causes a bad estimation of d · log2ES(x) that is exponentially
amplified when computing 2d·log2 ES(x). Such a bad estimation
is especially evident when d · log2ES(x) is large. Figure 4(b)
shows instead that exponential functions with small exponent d
but large base x are more sensitive to Nbits and, as shown also
above, the relative error decreases as Nbits increases. When
Nbits = 7 relative errors of all estimations are below 1%. The
AVG curve shows that, on average, a large relative error is
experienced when Nbits is small and that Nbits ≥ 7 ensures
an average error below 1%.
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2) Sensitivity to Ndigits: As shown in Fig. 5(a), in the
case of chosen-base variation (and thus bigger exponents),
for Ndigits ≥ 3 the relative error reaches values below 1%.
Instead, Fig. 5(b) shows that computations involving smaller
exponents but bigger bases are not very sensitive to Ndigits,
being relative errors always under 1%, and that considering
bigger Ndigits may in some cases even prove counterproduc-
tive. The AVG curve shows a similar trend: on average, an
increase in Ndigits does not affect much performance, and the
average relative error is always below 1%.

3) Sensitivity to Nterms: Figure 6(a) shows that Nterms

strongly affects the estimation of xd especially when the expo-
nent is large and the base is small. Relative errors oscillate but,
in a long term, decrease as Nterms increases. Oscillation is due
to the way how binomial series converges. When Nterms ≥ 7
relative error for all estimations is under 1%. Instead, as
shown in Fig. 6(b), with small chosen exponents and large
bases, relative errors are all below 1% when Nterms ≥ 6.
Oscillation is also well visible in the AVG curve that shows
how Nterms ≥ 6 leads to an average relative error below 1%.

D. Discussion about the cost of the proposed algorithms

In programmable switches, the best trade-off between
TCAM memory usage (as per strategy proposed in [15])
and number of instructions in Arithmetic Logic Unit (ALU)
should be explored: the processing time in the pipeline of pro-
grammable switches increases as the number of instructions in
the ALU increases, but this relieves from the usage of TCAM
memory. Avoiding the usage of TCAM memory implies that
P4Log and P4Exp do not require any two-way interaction with
the controller. In fact, when TCAM is used, the controller
needs to populate ternary match tables during the setup phase.
A thorough investigation and comparison with the state of the
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art in terms of overall memory occupation, data/control plane
interaction and execution time, is left as future work.

VI. EVALUATION OF P4ENTROPY

We implemented P4Entropy in Python and simulated it for
evaluation. We report results in this section.

A. Evaluation metrics and simulation settings

1) Testing flow trace: We use 2018-passive CAIDA flow
trace [28] for evaluation into 10 observation windows with
a fixed number of packets equal to 221 each. Fixing the
number of packets in an observation window is needed to
compare our approach with a state-of-the-art solution [6],
named SOTA entropy for the remainder of the section, which
can only be applied to observation windows where the number
of packets is fixed to a power of two.

2) Metrics: We consider relative error as metric. We call
Ĥ the estimated traffic entropy in an observation window and
H its exact value. The relative error is defined as the average

value of |H−Ĥ|H · 100% in the 10 observation windows.
3) Tuning parameters: Unless otherwise specified, the de-

fault tuning parameters are set as per Table III.

B. Simulation results

We simulate both our strategy and SOTA entropy in the
case that flow packet counts are estimated in the data plane
by adopting either Count-min Sketch or Count Sketch (see
Section II-D). We show how entropy estimation is affected
while changing the size Nh × Ns of the sketch (Fig. 7).
Fig. 7(a) shows the relative error in network traffic entropy
estimation for the two strategies when Ns is fixed and Nh

varies. It shows that the relative error slightly decreases as
Nh increases in all the cases. Moreover, P4Entropy and
SOTA entropy lead to similar relative error. It can be noted
that, when adopting Count-min Sketch, both P4Entropy and
SOTA entropy have large relative error (around 20%) meaning
that Count-min Sketch, with our settings, badly estimates flow
packet counts f̄i and both entropy estimation strategies result
ineffective. Additionally, in this case, the relative error of
SOTA entropy is slightly higher than the one of P4Entropy,
which is caused by the different ways how Sum(fi) is
estimated. In SOTA entropy, the Longest Prefix Match (LPM)
lookup table for F (fi) = fi log2 fi−(fi−1) log2(fi−1) (see
[6]) is sensitive to the large packet count (fi) overestimation
caused by Count-min Sketch. Conversely, P4Entropy needs to



TABLE III
DEFAULT PARAMETERS FOR P4ENTROPY

Alg Parameter Value

P4Entropy P4Log Ndigits 3
Nbits 4

P4Exp Nterms 7
Sketch size Nh ×Ns 10× 1000
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Fig. 7. Performance comparison of P4Entropy with an existing approach [6]

calculate log2 fi + 1
ln 2 (see Eq. 1), which is less sensitive to

large overestimations (i) due to the logarithm nature and (ii)
because 1

ln 2 is a constant value. This effect does not happen
while adopting Count-Sketch, since overestimations are much
less frequent. In that case, P4Entropy leads to slightly worse
results than SOTA entropy because, unlike SOTA entropy, it
uses an approximation for the computation of the network
traffic entropy (see Eq. 2).

Fig. 7(b) shows instead the impact of a variation of Ns on
relative error in entropy estimation. Results are similar to what
shown in Fig. 7(a), but it can be noted that both strategies
are more sensitive to a variation of Ns than of Nh. In this
case, when adopting Count Sketch, relative error is always
close to 3%. Note that a relative error of 3% is the maximum
possible value ensuring that accuracy of practical monitoring
applications is not affected [1].

VII. RELATED WORK

Logarithmic and exponential function estimation in P4:
Since P4 language does not support logarithm and exponential
function computation, many advanced algorithms leveraging
on those operations (e.g., HyperLogLog for linear counting
[29]) are not directly implementable using such domain-
specific language. However, these advanced algorithms are
useful for executing many network functionalities, such as
congestion control [2], flow-cardinality estimation [15] and
DDoS detection [6][30], so finding a way to support them
is of paramount importance. Naveen et al. [15] have already
successfully implemented estimation of logarithm and expo-
nential function in P4, but their strategy requires the storage of
appropriate pre-computed values in TCAM. It is shown that,
to ensure a relative error in the estimation below 1%, they
require around 0.5KB of TCAM memory occupation. This is
something that P4Exp and P4Log algorithms do not need.

Network traffic entropy estimation in data plane: Many
works can be found in literature dealing with network traffic

entropy estimation partially performed in the switches’ data
plane. For example, SketchVisor [19], UnivMon [26] and
Elastic Sketch [31] all envision some operations to be executed
in the programmable data plane and send to the controller only
summarized data. However, entropy estimation is executed at
the controller due to the need of logarithm calculation. Our
approach, instead, allows to compute the estimated entropy
directly in the data plane, without any interaction with the
controller. Additionally, Lapolli et al. [6] recently implemented
network traffic entropy estimation in the data plane using the
P4 language, with the aim of detecting DDoS attacks. Their
approach is valid but they require the usage of TCAM, which
is instead avoided by P4Entropy. Moreover, P4Entropy adopts
a time-interval-based observation window, while [6] requires
an observation window including a fixed power-of-two number
of packets. Our approach is more beneficial since it allows a
controller to synchronize the retrieval of estimated entropy
among all deployed programmable switches to estimate traffic
distribution on a network-wide scale [11], thus improving
statistical relevance of monitored values.

VIII. CONCLUSION

In this paper, we initially presented two algorithms, P4Log
and P4Exp, for the estimation of logarithm and exponential
function by only using P4-supported operations. The algo-
rithms have been successfully implemented in P4 and can be
used to enable the execution of monitoring tasks requiring
the computation of such functions. Then, based on those
algorithms, we proposed P4Entropy, a novel strategy allowing
the estimation of network traffic entropy entirely in the data
plane, which has been implemented in P4 as well.

We also evaluated all our proposed algorithms. We per-
formed a sensitivity analysis of P4Log and P4Exp with the
goal of finding the most appropriate values for different tuning
parameters to guarantee a relative error between estimated
and exact outputs below 1%. Unlike existing strategies in
literature, our algorithms avoid the usage of TCAM. We also
proved that P4Entropy has comparable accuracy to an existing
approach but, as P4Log and P4Exp, does not require the usage
of TCAM. Moreover, unlike the state of the art, P4Entropy
does not need a fixed-packet observation window, being then
more suitable when entropy estimation from multiple switches
has to be delivered to the controller in a synchronous fashion.

As future work, we plan to conduct new experiments to eval-
uate (i) processing time, (ii) data/control plane interaction, and
(iii) overall memory occupation of our proposed algorithms
in the emulated environment. Furthermore, starting from our
proposed algorithms, we plan to implement novel mechanisms
and structures to enable advanced monitoring functionalities
on a network-wide scale, such as entropy-based DDoS or
traffic change detection.
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