

INVEST: Flow-Based Traffic Volume Estimation in Data-Plane Programmable Networks

Damu Ding^{1,2}, Marco Savi³, Federico Pederzolli¹, Domenico Siracusa¹

¹ Fondazione Bruno Kessler, Trento, Italy ³ University of Milano-Bicocca, Milano, Italy

IFIP Networking conference

22nd June, 2021

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

- 1. Significant communication overhead
- 2. High latency caused by interaction
- 3. Cannot perform monitoring at line-rate speed (Up to 100 Gbps)

Network Infrastructure

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

P4-enabled programmable data plane for monitoring

Traffic volume estimation

Why traffic volume estimation?

Traffic volume is required by many network-wide monitoring tasks (i.e. monitor the whole network state instead of a single node)

- Heavy-hitter detection
 - Set an adaptive threshold (i.e. a fraction of network traffic volume)
- Heavy-changer detection
 - Set an adaptive threshold (i.e. a fraction of network traffic volume changes in two consecutive time intervals)
- Network traffic entropy estimation
 - One parameter to compute Shannon entropy, which indicates the network traffic distribution

Packet double counting problem

The same packet are counted multiple times by the switches along the forwarding _____ path

Ben Basat, Ran, et al. "Network-wide routing-oblivious heavy hitters." Proceedings of the 2018 Symposium on Architectures for Networking and Communications Systems. 2018.

RICOCC

Sample-based solution

Damu Ding, Marco Savi, Gianni Antichi, and Domenico Siracusa. An incrementally-deployable P4-enabled architecture for network-wide heavy-hitter detection. IEEE Transactions on Network and Service Management (TNSM) 17.1 (2020): 75-88.

AROMA

- Fast: Time complexity is only O(1)
- Efficient and accurate: 1.5KB can estimate 10⁹ numbers with standard error 2%.
- Mergeable: Multiple HLL data structures can be merged into a single one to perform the estimation of union
- Update operation (i.e. store flow statistics) is implementable in P4

Flajolet, Philippe, et al. "Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm." Discrete Mathematics and Theoretical Computer Science, 2007.

RICOCC

Ben Basat, Ran, et al. "Routing Oblivious Measurement Analytics." 2020 IFIP Networking Conference (Networking). IEEE, 2020.

INVEST: Flow-Based Traffic Volume Estimation in Data-Plane Programmable Networks Damu Ding et al.ding@fbk.eu

INVEST: Flow-Based Traffic Volume Estimation in Data-Plane Programmable Networks Damu Ding et al.ding@fbk.eu

4. The average flow size
$$\hat{R}_{tot} = \frac{1}{k} \sum_{i=1}^{k} \hat{R}_i = \frac{1}{k} \sum_{i=1}^{k} \frac{|S_i|}{\hat{n}_i}$$

INVEST: Flow-Based Traffic Volume Estimation in Data-Plane Programmable Networks Damu Ding et al.ding@fbk.eu

INVEST: Flow-Based Traffic Volume Estimation in Data-Plane Programmable Networks Damu Ding et al.ding@fbk.eu

Simulation settings

https://sites.uclouvain.be/defo

RICOCC

²https://www.geant.org/Networks/Pan-European_network/Pages/GEANT_topology_map.aspx

Comparing to SOTA

Table: Comparison of INVEST with existing strategies

Estimation method	Relative error				
	GE/	ANT	DEFO		
	$T_{int} = 1$ s	$T_{int} = 5$ s	$T_{int} = 1$ s	$T_{int} = 5$ s	
INVEST	2.33%	2.05%	2.44%	2.19%	
Sum	333.01%	323.00%	412.79%	412.89%	
Sample $^{\triangle 3}$	33.69%	38.78%	25.78%	30.71%	
AROMA* ⁴	0.48%	3.10%	0.48%	3.10%	

 $^{\triangle}$: Feasible but requires large amounts of memory in the switch

*: Requires unique flow key for each packet

Basat, Ran Ben, et al. "Routing Oblivious Measurement Analytics." 2020 IFIP Networking Conference (Networking). IEEE, 2020.

RICOC

³Damu Ding, Marco Savi, Gianni Antichi, and Domenico Siracusa. An incrementally-deployable P4-enabled architecture for network-wide heavy-hitter detection. IEEE Transactions on Network and Service Management (TNSM) 17.1 (2020): 75-88.

	# Distinct flows n_{tot} in T_{int}		Relative error			
Flow key			GEANT		DEFO	
	$T_{int} = 1$ s	$T_{int} = 5$ S	$T_{int} = 1$ s	$T_{int} = 5$ s	$T_{int} = 1$ s	$T_{int} = 5$ s
srcIP	\sim 27K	\sim 67K	20.15%	26.43%	24.80%	32.35%
dstIP	\sim 22K	\sim 58K	23.94%	28.64%	29.13%	34.80%
$\{srcIP, dstIP\}$	\sim 47K	\sim 147K	2.33%	2.05%	2.44%	2.19%
$\{srcIP, dstIP, prot\}$	\sim 47.1K	\sim 147.6K	2.36%	2.73%	2.56%	2.37%
Unique packet id (AROMA)	\sim 450K	\sim 2300K	0.48%	3.10%	0.48%	3.10%

Programmable hardware switch

32x 100Gbps QSFP ports

Figure: Edgecore Wedge-100BF-32X switch equipped with Barefoot Tofino ASIC in FBK's lab

1. Higher monitoring throughput

1. Limited hardware resources 2. Computational constraints

Evaluation of resource usage and processing time

Table: Normalized switch resource usage of INVEST

Strategy	No. stages	SRAM	ТСАМ	No. ALUs	PHV size	Additional proc. time w.r.t. simple forwarding
Simple forwarding	16.67%	2.5%	8.33%	4.17%	7.30%	-
INVEST_Update + Simple forwarding	41.67%	3.23%	9.03%	8.33%	7.68%	45ns

Conclusion

- We designed INVEST, a flow-based method that exploits programmable data planes to estimate the traffic volume while solving the double counting problem
- We theoretically analyzed INVEST and experimentally evaluated it with simulations
- We implemented the HyperLogLog Update procedure for flow cardinality estimation in P4
- We developed a prototype of INVEST, installed it in a carrier-grade programmable switch with Tofino Application Specific Integrated Circuit (ASIC), and evaluated its performance in a physical testbed

Thank you!

