
Estimating Logarithmic and Exponential Functions
to Track Network Traffic Entropy in P4

Damu Ding1,2, Marco Savi1,3, Domenico Siracusa1

1Fondazione Bruno Kessler, Trento, Italy 2University of Bologna, Bologna, Italy
3University of Milano-Bicocca, Milan, Italy

NOMS 2020
21st April, 2020

Network monitoring/security functionalities in programmable data planes

1. Significant communication overhead
2. The latency caused by interaction

Data plane programmable switches

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Figure source: Kreutz, Diego, et al. ”Software-defined networking: A comprehensive survey.” Proceedings of the IEEE 103.1 (2015): 14-76.
and https://n0where.net/real-time-network-monitoring-cyberprobe

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 2

Network monitoring/security functionalities in programmable data planes

1. Significant communication overhead
2. The latency caused by interaction

Data plane programmable switches

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Figure source: Kreutz, Diego, et al. ”Software-defined networking: A comprehensive survey.” Proceedings of the IEEE 103.1 (2015): 14-76.
and https://n0where.net/real-time-network-monitoring-cyberprobe

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 2

Network monitoring/security functionalities in programmable data planes

1. Significant communication overhead
2. The latency caused by interaction

Data plane programmable switches

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Figure source: Kreutz, Diego, et al. ”Software-defined networking: A comprehensive survey.” Proceedings of the IEEE 103.1 (2015): 14-76.
and https://n0where.net/real-time-network-monitoring-cyberprobe

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 2

Network monitoring/security functionalities in programmable data planes

1. Significant communication overhead
2. The latency caused by interaction

Data plane programmable switches

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Figure source: Kreutz, Diego, et al. ”Software-defined networking: A comprehensive survey.” Proceedings of the IEEE 103.1 (2015): 14-76.
and https://n0where.net/real-time-network-monitoring-cyberprobe

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 2

Network monitoring/security functionalities in programmable data planes

1. Significant communication overhead
2. The latency caused by interaction

Data plane programmable switches

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Figure source: Kreutz, Diego, et al. ”Software-defined networking: A comprehensive survey.” Proceedings of the IEEE 103.1 (2015): 14-76.
and https://n0where.net/real-time-network-monitoring-cyberprobe

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 2

Network monitoring/security functionalities in programmable data planes

1. Significant communication overhead
2. The latency caused by interaction

Data plane programmable switches

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Figure source: Kreutz, Diego, et al. ”Software-defined networking: A comprehensive survey.” Proceedings of the IEEE 103.1 (2015): 14-76.
and https://n0where.net/real-time-network-monitoring-cyberprobe

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 2

Network monitoring/security functionalities in programmable data planes

1. Significant communication overhead
2. The latency caused by interaction

Data plane programmable switches

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Heavy-hitter detection
Flow cardinality estimation

DDoS detection
Network traffic entropy estimation

Figure source: Kreutz, Diego, et al. ”Software-defined networking: A comprehensive survey.” Proceedings of the IEEE 103.1 (2015): 14-76.
and https://n0where.net/real-time-network-monitoring-cyberprobe

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 2

Network traffic entropy
▶ Shannon entropy H = −

∑n
i=1

fi
|S|tot log2

fi
|S|tot

▶ fi: the packet count of the incoming flow i
▶ |S|tot: the total number of processed packets by the switch during time interval
▶ n: the overall number of flows

▶ Network traffic entropy H gives an indication on traffic distribution across the
network
▶ Minimum H = 0: when all packets |S|tot belong to the same flow i
▶ Maximum H = log2 n: when n flows are uniform distributed

▶ A periodical track of entropy helps diagnose security and performance issues
▶ DDoS detection

▶ The entropy of dstIP significantly decreases
▶ Port-scan detection

▶ The entropy of {dst IP, dst port} significantly decreases

Is it implementable in P4-enabled programmable switches?

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 3

Network traffic entropy
▶ Shannon entropy H = −

∑n
i=1

fi
|S|tot log2

fi
|S|tot

▶ fi: the packet count of the incoming flow i
▶ |S|tot: the total number of processed packets by the switch during time interval
▶ n: the overall number of flows

▶ Network traffic entropy H gives an indication on traffic distribution across the
network
▶ Minimum H = 0: when all packets |S|tot belong to the same flow i
▶ Maximum H = log2 n: when n flows are uniform distributed

▶ A periodical track of entropy helps diagnose security and performance issues
▶ DDoS detection

▶ The entropy of dstIP significantly decreases
▶ Port-scan detection

▶ The entropy of {dst IP, dst port} significantly decreases

Is it implementable in P4-enabled programmable switches?

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 3

Network traffic entropy
▶ Shannon entropy H = −

∑n
i=1

fi
|S|tot log2

fi
|S|tot

▶ fi: the packet count of the incoming flow i
▶ |S|tot: the total number of processed packets by the switch during time interval
▶ n: the overall number of flows

▶ Network traffic entropy H gives an indication on traffic distribution across the
network
▶ Minimum H = 0: when all packets |S|tot belong to the same flow i
▶ Maximum H = log2 n: when n flows are uniform distributed

▶ A periodical track of entropy helps diagnose security and performance issues
▶ DDoS detection

▶ The entropy of dstIP significantly decreases
▶ Port-scan detection

▶ The entropy of {dst IP, dst port} significantly decreases

Is it implementable in P4-enabled programmable switches?

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 3

Network traffic entropy
▶ Shannon entropy H = −

∑n
i=1

fi
|S|tot log2

fi
|S|tot

▶ fi: the packet count of the incoming flow i
▶ |S|tot: the total number of processed packets by the switch during time interval
▶ n: the overall number of flows

▶ Network traffic entropy H gives an indication on traffic distribution across the
network
▶ Minimum H = 0: when all packets |S|tot belong to the same flow i
▶ Maximum H = log2 n: when n flows are uniform distributed

▶ A periodical track of entropy helps diagnose security and performance issues
▶ DDoS detection

▶ The entropy of dstIP significantly decreases
▶ Port-scan detection

▶ The entropy of {dst IP, dst port} significantly decreases

Is it implementable in P4-enabled programmable switches?

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 3

P4 language limitations
▶ P4 is a high-level domain-specific language for programmable switches.
▶ Supports +, −, ∗, ≫, ≪, ^ (XOR), | (OR), & (AND), if-else statements, etc.

Logarithmic functionExponential function

Loops (For/While)

DivisionFloating numbers

▶ Enable logarithmic and exponential-function estimation as the building blocks for
network traffic entropy estimation entirely in P4

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 4

P4 language limitations
▶ P4 is a high-level domain-specific language for programmable switches.
▶ Supports +, −, ∗, ≫, ≪, ^ (XOR), | (OR), & (AND), if-else statements, etc.

Logarithmic function

Exponential function

Loops (For/While)

DivisionFloating numbers

▶ Enable logarithmic and exponential-function estimation as the building blocks for
network traffic entropy estimation entirely in P4

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 4

P4 language limitations
▶ P4 is a high-level domain-specific language for programmable switches.
▶ Supports +, −, ∗, ≫, ≪, ^ (XOR), | (OR), & (AND), if-else statements, etc.

Logarithmic functionExponential function

Loops (For/While)

DivisionFloating numbers

▶ Enable logarithmic and exponential-function estimation as the building blocks for
network traffic entropy estimation entirely in P4

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 4

P4 language limitations
▶ P4 is a high-level domain-specific language for programmable switches.
▶ Supports +, −, ∗, ≫, ≪, ^ (XOR), | (OR), & (AND), if-else statements, etc.

Logarithmic functionExponential function

Loops (For/While)

DivisionFloating numbers

▶ Enable logarithmic and exponential-function estimation as the building blocks for
network traffic entropy estimation entirely in P4

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 4

P4 language limitations
▶ P4 is a high-level domain-specific language for programmable switches.
▶ Supports +, −, ∗, ≫, ≪, ^ (XOR), | (OR), & (AND), if-else statements, etc.

Logarithmic functionExponential function

Loops (For/While)

Division

Floating numbers

▶ Enable logarithmic and exponential-function estimation as the building blocks for
network traffic entropy estimation entirely in P4

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 4

P4 language limitations
▶ P4 is a high-level domain-specific language for programmable switches.
▶ Supports +, −, ∗, ≫, ≪, ^ (XOR), | (OR), & (AND), if-else statements, etc.

Logarithmic functionExponential function

Loops (For/While)

DivisionFloating numbers

▶ Enable logarithmic and exponential-function estimation as the building blocks for
network traffic entropy estimation entirely in P4

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 4

P4 language limitations
▶ P4 is a high-level domain-specific language for programmable switches.
▶ Supports +, −, ∗, ≫, ≪, ^ (XOR), | (OR), & (AND), if-else statements, etc.

Logarithmic functionExponential function

Loops (For/While)

DivisionFloating numbers

▶ Enable logarithmic and exponential-function estimation as the building blocks for
network traffic entropy estimation entirely in P4

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 4

P4 language limitations
▶ P4 is a high-level domain-specific language for programmable switches.
▶ Supports +, −, ∗, ≫, ≪, ^ (XOR), | (OR), & (AND), if-else statements, etc.

Logarithmic functionExponential function

Loops (For/While)

DivisionFloating numbers

▶ Enable logarithmic and exponential-function estimation as the building blocks for
network traffic entropy estimation entirely in P4

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 4

Why logarithmic and exponential-function estimations?

▶ Network traffic entropy estimation

H = −
n∑

i=1

fi
|S|tot

log2
fi

|S|tot
= log2 |S|tot −

1

|S|tot

n∑
i=1

fi log2 fi

= log2(|S|tot)− 2(
∑n

i=1 fi log2 fi−log2 |S|tot)

3 times of logarithmic computation and 1 time of exponential-function computation
▶ SOTA needs thousands of table entries in TCAM for the logarithmic and

exponential-function estimations to assure the relative error is under 1%
▶ TCAM is expensive and power-hungry
▶ SOTA needs a controller to populate the TCAM lookup tables in the switch

Network traffic entropy estimation should avoid using TCAM to work entirely
in programmable data planes

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 5

Why logarithmic and exponential-function estimations?
▶ Network traffic entropy estimation

H = −
n∑

i=1

fi
|S|tot

log2
fi

|S|tot
= log2 |S|tot −

1

|S|tot

n∑
i=1

fi log2 fi

= log2(|S|tot)− 2(
∑n

i=1 fi log2 fi−log2 |S|tot)

3 times of logarithmic computation and 1 time of exponential-function computation

▶ SOTA needs thousands of table entries in TCAM for the logarithmic and
exponential-function estimations to assure the relative error is under 1%
▶ TCAM is expensive and power-hungry
▶ SOTA needs a controller to populate the TCAM lookup tables in the switch

Network traffic entropy estimation should avoid using TCAM to work entirely
in programmable data planes

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 5

Why logarithmic and exponential-function estimations?
▶ Network traffic entropy estimation

H = −
n∑

i=1

fi
|S|tot

log2
fi

|S|tot
= log2 |S|tot −

1

|S|tot

n∑
i=1

fi log2 fi

= log2(|S|tot)− 2(
∑n

i=1 fi log2 fi−log2 |S|tot)

3 times of logarithmic computation and 1 time of exponential-function computation
▶ SOTA 1 needs thousands of table entries in TCAM for the logarithmic and

exponential-function estimations to assure the relative error is under 1%
▶ TCAM is expensive and power-hungry
▶ SOTA needs a controller to populate the TCAM lookup tables in the switch

Network traffic entropy estimation should avoid using TCAM to work entirely
in programmable data planes

1Sharma, N. K., Kaufmann et al. ”Evaluating the power of flexible packet processing for network resource allocation” Symposium on Networked
Systems Design and Implementation (NSDI 17) (pp. 67-82).

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 5

Why logarithmic and exponential-function estimations?
▶ Network traffic entropy estimation

H = −
n∑

i=1

fi
|S|tot

log2
fi

|S|tot
= log2 |S|tot −

1

|S|tot

n∑
i=1

fi log2 fi

= log2(|S|tot)− 2(
∑n

i=1 fi log2 fi−log2 |S|tot)

3 times of logarithmic computation and 1 time of exponential-function computation
▶ SOTA 1 needs thousands of table entries in TCAM for the logarithmic and

exponential-function estimations to assure the relative error is under 1%
▶ TCAM is expensive and power-hungry
▶ SOTA needs a controller to populate the TCAM lookup tables in the switch

Network traffic entropy estimation should avoid using TCAM to work entirely
in programmable data planes

1Sharma, N. K., Kaufmann et al. ”Evaluating the power of flexible packet processing for network resource allocation” Symposium on Networked
Systems Design and Implementation (NSDI 17) (pp. 67-82).

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 5

Our contributions

1. P4Log: An algorithm for the estimation of logarithmic function
2. P4Exp: An algorithm for the estimation of exponential function
3. P4Entropy: A novel strategy allowing the estimation of network traffic entropy

without relying on TCAM
4. We implemented the prototypes of the proposed algorithms and strategy in the P4

behavioral model 2, proving that they can be entirely executed in the
programmable data plane.

2https://github.com/p4lang/behavioral-model
,[.5em]

Estimating Logarithmic and Exponential Functions
to Track Network Traffic Entropy in P4

D.Ding et al. ding@fbk.eu 6

https://github.com/p4lang/behavioral-model

P4Log algorithm
▶ INPUT: An L-bit integer x (L ∈ {16, 32, 64}) and a given logarithmic base d

▶ OUTPUT: Estimation of logd x ≪ 10 (i.e., logd x · 210)

logd x
= log2 x · logd 2

log2 x ≪ 10
= (log2 x)int ≪ 10 + (log2 x)dec ≪ 10

logd 2
(Constant)

n = (log2 x)int ≪ 10

index of leftmost 1 of x
(e.g., (8)10 = (1000)2 and log2 8 = 3) (log2 x)dec = log2(1 + x−2n

2n)

(e.g., log2(1 +
(110)2−(100)2

(100)2︸ ︷︷ ︸
Nbits=2

) ≪ 10 ≈ 0.585︸ ︷︷ ︸
Ndigits=3

≪ 10)

(e.g., log2(1 +
(1101)2−(1000)2

(1000)2︸ ︷︷ ︸
Nbits==3

) ≪ 10 ≈ 0.7004︸ ︷︷ ︸
Ndigits=4

≪ 10)

Constant (Pre-computed: Binary search tree)

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 7

P4Log algorithm
▶ INPUT: An L-bit integer x (L ∈ {16, 32, 64}) and a given logarithmic base d

▶ OUTPUT: Estimation of logd x ≪ 10 (i.e., logd x · 210)
logd x

= log2 x · logd 2

log2 x ≪ 10
= (log2 x)int ≪ 10 + (log2 x)dec ≪ 10

logd 2
(Constant)

n = (log2 x)int ≪ 10

index of leftmost 1 of x
(e.g., (8)10 = (1000)2 and log2 8 = 3) (log2 x)dec = log2(1 + x−2n

2n)

(e.g., log2(1 +
(110)2−(100)2

(100)2︸ ︷︷ ︸
Nbits=2

) ≪ 10 ≈ 0.585︸ ︷︷ ︸
Ndigits=3

≪ 10)

(e.g., log2(1 +
(1101)2−(1000)2

(1000)2︸ ︷︷ ︸
Nbits==3

) ≪ 10 ≈ 0.7004︸ ︷︷ ︸
Ndigits=4

≪ 10)

Constant (Pre-computed: Binary search tree)

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 7

P4Log algorithm
▶ INPUT: An L-bit integer x (L ∈ {16, 32, 64}) and a given logarithmic base d

▶ OUTPUT: Estimation of logd x ≪ 10 (i.e., logd x · 210)
logd x

= log2 x · logd 2

log2 x ≪ 10
= (log2 x)int ≪ 10 + (log2 x)dec ≪ 10

logd 2
(Constant)

n = (log2 x)int ≪ 10

index of leftmost 1 of x
(e.g., (8)10 = (1000)2 and log2 8 = 3)

(log2 x)dec = log2(1 + x−2n

2n)

(e.g., log2(1 +
(110)2−(100)2

(100)2︸ ︷︷ ︸
Nbits=2

) ≪ 10 ≈ 0.585︸ ︷︷ ︸
Ndigits=3

≪ 10)

(e.g., log2(1 +
(1101)2−(1000)2

(1000)2︸ ︷︷ ︸
Nbits==3

) ≪ 10 ≈ 0.7004︸ ︷︷ ︸
Ndigits=4

≪ 10)

Constant (Pre-computed: Binary search tree)

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 7

P4Log algorithm
▶ INPUT: An L-bit integer x (L ∈ {16, 32, 64}) and a given logarithmic base d

▶ OUTPUT: Estimation of logd x ≪ 10 (i.e., logd x · 210)
logd x

= log2 x · logd 2

log2 x ≪ 10
= (log2 x)int ≪ 10 + (log2 x)dec ≪ 10

logd 2
(Constant)

n = (log2 x)int ≪ 10

index of leftmost 1 of x
(e.g., (8)10 = (1000)2 and log2 8 = 3) (log2 x)dec = log2(1 + x−2n

2n)

(e.g., log2(1 +
(110)2−(100)2

(100)2︸ ︷︷ ︸
Nbits=2

) ≪ 10 ≈ 0.585︸ ︷︷ ︸
Ndigits=3

≪ 10)

(e.g., log2(1 +
(1101)2−(1000)2

(1000)2︸ ︷︷ ︸
Nbits==3

) ≪ 10 ≈ 0.7004︸ ︷︷ ︸
Ndigits=4

≪ 10)

Constant (Pre-computed: Binary search tree)

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 7

P4Exp algorithm
▶ INPUT: An integer base x and a real number exponent d
▶ OUTPUT: Estimation of xd

xd = 2d log2 x

= 2(d log2 x)int · 2(d log2 x)dec

2(d log2 x)int

= 1 ≪ ((d log2 x)int)
2(d log2 x)dec

▶ Binomial series expansion: 2y = 1 + y + y(y−1)
2! + y(y−1)(y−2)

3! + · · ·
So it holds that:

2(d log2 x)dec = 1 + (d log2 x)dec +
(d log2 x)dec((d log2 x)dec − 1)

2!
+ · · ·︸ ︷︷ ︸

Nterms

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 8

P4Exp algorithm
▶ INPUT: An integer base x and a real number exponent d
▶ OUTPUT: Estimation of xd

xd = 2d log2 x

= 2(d log2 x)int · 2(d log2 x)dec

2(d log2 x)int

= 1 ≪ ((d log2 x)int)
2(d log2 x)dec

▶ Binomial series expansion: 2y = 1 + y + y(y−1)
2! + y(y−1)(y−2)

3! + · · ·
So it holds that:

2(d log2 x)dec = 1 + (d log2 x)dec +
(d log2 x)dec((d log2 x)dec − 1)

2!
+ · · ·︸ ︷︷ ︸

Nterms

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 8

P4Exp algorithm
▶ INPUT: An integer base x and a real number exponent d
▶ OUTPUT: Estimation of xd

xd = 2d log2 x

= 2(d log2 x)int · 2(d log2 x)dec

2(d log2 x)int

= 1 ≪ ((d log2 x)int)
2(d log2 x)dec

▶ Binomial series expansion: 2y = 1 + y + y(y−1)
2! + y(y−1)(y−2)

3! + · · ·

So it holds that:
2(d log2 x)dec = 1 + (d log2 x)dec +

(d log2 x)dec((d log2 x)dec − 1)

2!
+ · · ·︸ ︷︷ ︸

Nterms

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 8

P4Exp algorithm
▶ INPUT: An integer base x and a real number exponent d
▶ OUTPUT: Estimation of xd

xd = 2d log2 x

= 2(d log2 x)int · 2(d log2 x)dec

2(d log2 x)int

= 1 ≪ ((d log2 x)int)
2(d log2 x)dec

▶ Binomial series expansion: 2y = 1 + y + y(y−1)
2! + y(y−1)(y−2)

3! + · · ·
So it holds that:

2(d log2 x)dec = 1 + (d log2 x)dec +
(d log2 x)dec((d log2 x)dec − 1)

2!
+ · · ·︸ ︷︷ ︸

Nterms

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 8

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts

The packets are identified by flow key {srcIP, dstIP}
The flow key can be any subset of 5 tuple without any loss of generality

The packets are identified by flow key {srcIP, dstIP}
The flow key can be any subset of 5 tuple without any loss of generality

|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts

The packets are identified by flow key {srcIP, dstIP}
The flow key can be any subset of 5 tuple without any loss of generality

The packets are identified by flow key {srcIP, dstIP}
The flow key can be any subset of 5 tuple without any loss of generality

|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality

The packets are identified by flow key {srcIP, dstIP}
The flow key can be any subset of 5 tuple without any loss of generality

|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule 3: Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

3D. J. Struik, “The origin of L’Hopital’s rule,” The Mathematics Teacher, vol. 56, no. 4, pp. 257–260, 1963.
,[.5em]

Estimating Logarithmic and Exponential Functions
to Track Network Traffic Entropy in P4

D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

P4Entropy strategy

Programmable switch

Packet
stream S

Update
counter
|S|

{srcIP, dstIP}i

A new time interval starts
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
The packets are identified by flow key {srcIP, dstIP}

The flow key can be any subset of 5 tuple without any loss of generality
|S| = |S| + 1

Update / Query Sketch

Sketch is a memory-efficient data structure to store and estimate
the packet count f̄i of each flow i.

- It is composed by Nh hash functions with output size Ns.
- The accuracy of estimated packet count increases as Nh or Ns increases

Update
Sum(|S|)

f̄i(|S|)

Sum(|S|) = Sum(|S| − 1) + f̄i(|S|) log2 f̄i(|S|)− (f̄i(|S|)− 1) log2 (f̄i(|S|)− 1)

Applying L’Hopital’s rule Sum(|S|) = Sum(|S| − 1) + log2 f̄i(|S|) + 1
ln 2

At the end of Tint
(|S| = |S|tot)

Estimate Entropy H(|S|tot)

At the end of Tint
(Sum(|S|) = Sum(|S|tot))

H(|S|tot) = log2(|S|tot)︸ ︷︷ ︸
P4Log

− 2

P4Log︷ ︸︸ ︷
log2(Sum(|S|tot))−

P4Log︷ ︸︸ ︷
log2(|S|tot)︸ ︷︷ ︸

P4Exp

Controller

Report H(|S|tot)

P4Entropy can estimate network traffic entropy
entirely in the switch

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 9

Evaluation settings
Metric: Relative error
▶ P4Log Given an input value x, relative error is defined as

|P4Log(x,2)−log2 x|
log2 x

· 100%, where log2 x is the exact value.
▶ P4Exp Given an input base x and an exponent d, the relative error is defined as

|P4Exp(x,d)−xd|
xd · 100%.

▶ P4Entropy We call Ĥ the estimated traffic entropy in an observation window and
H its exact value. The relative error is defined as the average value of
|H−Ĥ|

H · 100% in the 10 observation windows each composed by 221 packets
captured from a real flow trace 3

3CAIDA UCSD Anonymized Internet Traces Dataset http://www.caida.org/data/passive/passive_dataset.xml
,[.5em]

Estimating Logarithmic and Exponential Functions
to Track Network Traffic Entropy in P4

D.Ding et al. ding@fbk.eu 10

 http://www.caida.org/data/passive/passive_dataset.xml

Results P4Log

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

Nbits

Re
lat

ive
er

ro
r(

%
)

log2 (24 − 1) log2 (28 − 1)

log2 (216 − 1) log2 (232 − 1)

log2 (264 − 1) AVG

(a) Sensitivity to Nbits (Ndigits = 3)

2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ndigits

Re
lat

ive
er

ro
r(

%
)

log2 (24 − 1) log2 (28 − 1)

log2 (216 − 1) log2 (232 − 1)

log2 (264 − 1) AVG

(b) Sensitivity to Ndigits (Nbits = 4)
Figure: Sensitivity of P4Log to Nbits (a) and Ndigits (b)

log2(1 +
(110)2−(100)2

(100)2︸ ︷︷ ︸
Nbits=2

) ≪ 10 ≈ 0.585︸ ︷︷ ︸
Ndigits=3

≪ 10 2l − 1 = 1 · · · 1︸ ︷︷ ︸
l

(l ∈ 4, 8, 16, 32, 64)

All the bits after Nbits are ignored and considered as 0. The algorithm leads to worst-case
estimations when most significant bits after Nbits are 1s.

AVG is the average relative error in logarithm estimations among randomly-selected 5 · 106
integer numbers such that x ∈ {1, 264 − 1}Relative error < 1% when Nbits = 4 and Ndigits = 3

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 11

Results P4Log

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

Nbits

Re
lat

ive
er

ro
r(

%
)

log2 (24 − 1) log2 (28 − 1)

log2 (216 − 1) log2 (232 − 1)

log2 (264 − 1) AVG

(a) Sensitivity to Nbits (Ndigits = 3)

2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ndigits

Re
lat

ive
er

ro
r(

%
)

log2 (24 − 1) log2 (28 − 1)

log2 (216 − 1) log2 (232 − 1)

log2 (264 − 1) AVG

(b) Sensitivity to Ndigits (Nbits = 4)
Figure: Sensitivity of P4Log to Nbits (a) and Ndigits (b)

log2(1 +
(110)2−(100)2

(100)2︸ ︷︷ ︸
Nbits=2

) ≪ 10 ≈ 0.585︸ ︷︷ ︸
Ndigits=3

≪ 10 2l − 1 = 1 · · · 1︸ ︷︷ ︸
l

(l ∈ 4, 8, 16, 32, 64)

All the bits after Nbits are ignored and considered as 0. The algorithm leads to worst-case
estimations when most significant bits after Nbits are 1s.

AVG is the average relative error in logarithm estimations among randomly-selected 5 · 106
integer numbers such that x ∈ {1, 264 − 1}Relative error < 1% when Nbits = 4 and Ndigits = 3

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 11

Results P4Log

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

Nbits

Re
lat

ive
er

ro
r(

%
)

log2 (24 − 1) log2 (28 − 1)

log2 (216 − 1) log2 (232 − 1)

log2 (264 − 1) AVG

(a) Sensitivity to Nbits (Ndigits = 3)

2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ndigits

Re
lat

ive
er

ro
r(

%
)

log2 (24 − 1) log2 (28 − 1)

log2 (216 − 1) log2 (232 − 1)

log2 (264 − 1) AVG

(b) Sensitivity to Ndigits (Nbits = 4)
Figure: Sensitivity of P4Log to Nbits (a) and Ndigits (b)

log2(1 +
(110)2−(100)2

(100)2︸ ︷︷ ︸
Nbits=2

) ≪ 10 ≈ 0.585︸ ︷︷ ︸
Ndigits=3

≪ 10 2l − 1 = 1 · · · 1︸ ︷︷ ︸
l

(l ∈ 4, 8, 16, 32, 64)All the bits after Nbits are ignored and considered as 0. The algorithm leads to worst-case
estimations when most significant bits after Nbits are 1s.

AVG is the average relative error in logarithm estimations among randomly-selected 5 · 106
integer numbers such that x ∈ {1, 264 − 1}

Relative error < 1% when Nbits = 4 and Ndigits = 3

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 11

Results P4Log

1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

Nbits

Re
lat

ive
er

ro
r(

%
)

log2 (24 − 1) log2 (28 − 1)

log2 (216 − 1) log2 (232 − 1)

log2 (264 − 1) AVG

(a) Sensitivity to Nbits (Ndigits = 3)

2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ndigits

Re
lat

ive
er

ro
r(

%
)

log2 (24 − 1) log2 (28 − 1)

log2 (216 − 1) log2 (232 − 1)

log2 (264 − 1) AVG

(b) Sensitivity to Ndigits (Nbits = 4)
Figure: Sensitivity of P4Log to Nbits (a) and Ndigits (b)

log2(1 +
(110)2−(100)2

(100)2︸ ︷︷ ︸
Nbits=2

) ≪ 10 ≈ 0.585︸ ︷︷ ︸
Ndigits=3

≪ 10 2l − 1 = 1 · · · 1︸ ︷︷ ︸
l

(l ∈ 4, 8, 16, 32, 64)All the bits after Nbits are ignored and considered as 0. The algorithm leads to worst-case
estimations when most significant bits after Nbits are 1s.

AVG is the average relative error in logarithm estimations among randomly-selected 5 · 106
integer numbers such that x ∈ {1, 264 − 1}

Relative error < 1% when Nbits = 4 and Ndigits = 3

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 11

Results P4Exp

2 3 4 5 6 7 8 9

0

5

10

15

20

Nbits

Re
lat

ive
er

ro
r(

%
)

14486

62085

551094

20971533

303700005002

AVG

(a) Nbits

2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

Ndigits

Re
lat

ive
er

ro
r(

%
)

14486 62085

551094 20971533

303700005002 AVG

(b) Ndigits

2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

Nterms

Re
lat

ive
er

ro
r(

%
)

14486 62085

551094 20971533

303700005002 AVG

(c) Nterms

Figure: Sensitivity analysis of P4Exp (Nbits = 7, Ndigits = 3 and Nterms = 7)

We fix the integer exponent d to a chosen value, then we find the largest 64-bit integer base x
that maximizes the output xd within 64 bits

AVG is the average relative error in exponential function estimation among 5 · 106 integer
numbers with base x ∈ {1, 232 − 1} and exponent d ∈ {2, 32} both randomly chosen

2(d log2 x)dec = 1 + (d log2 x)dec +
(d log2 x)dec((d log2 x)dec − 1)

2!
+ · · ·︸ ︷︷ ︸

Nterms

Relative error < 1% when Nbits = 7, Ndigits = 3 and Nterms = 7

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 12

Results P4Exp

2 3 4 5 6 7 8 9

0

5

10

15

20

Nbits

Re
lat

ive
er

ro
r(

%
)

14486

62085

551094

20971533

303700005002

AVG

(a) Nbits

2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

Ndigits

Re
lat

ive
er

ro
r(

%
)

14486 62085

551094 20971533

303700005002 AVG

(b) Ndigits

2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

Nterms

Re
lat

ive
er

ro
r(

%
)

14486 62085

551094 20971533

303700005002 AVG

(c) Nterms

Figure: Sensitivity analysis of P4Exp (Nbits = 7, Ndigits = 3 and Nterms = 7)

We fix the integer exponent d to a chosen value, then we find the largest 64-bit integer base x
that maximizes the output xd within 64 bits

AVG is the average relative error in exponential function estimation among 5 · 106 integer
numbers with base x ∈ {1, 232 − 1} and exponent d ∈ {2, 32} both randomly chosen

2(d log2 x)dec = 1 + (d log2 x)dec +
(d log2 x)dec((d log2 x)dec − 1)

2!
+ · · ·︸ ︷︷ ︸

Nterms

Relative error < 1% when Nbits = 7, Ndigits = 3 and Nterms = 7

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 12

Results P4Exp

2 3 4 5 6 7 8 9

0

5

10

15

20

Nbits

Re
lat

ive
er

ro
r(

%
)

14486

62085

551094

20971533

303700005002

AVG

(a) Nbits

2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

Ndigits

Re
lat

ive
er

ro
r(

%
)

14486 62085

551094 20971533

303700005002 AVG

(b) Ndigits

2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

Nterms

Re
lat

ive
er

ro
r(

%
)

14486 62085

551094 20971533

303700005002 AVG

(c) Nterms

Figure: Sensitivity analysis of P4Exp (Nbits = 7, Ndigits = 3 and Nterms = 7)

We fix the integer exponent d to a chosen value, then we find the largest 64-bit integer base x
that maximizes the output xd within 64 bitsAVG is the average relative error in exponential function estimation among 5 · 106 integer

numbers with base x ∈ {1, 232 − 1} and exponent d ∈ {2, 32} both randomly chosen

2(d log2 x)dec = 1 + (d log2 x)dec +
(d log2 x)dec((d log2 x)dec − 1)

2!
+ · · ·︸ ︷︷ ︸

Nterms

Relative error < 1% when Nbits = 7, Ndigits = 3 and Nterms = 7

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 12

Results P4Exp

2 3 4 5 6 7 8 9

0

5

10

15

20

Nbits

Re
lat

ive
er

ro
r(

%
)

14486

62085

551094

20971533

303700005002

AVG

(a) Nbits

2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

Ndigits

Re
lat

ive
er

ro
r(

%
)

14486 62085

551094 20971533

303700005002 AVG

(b) Ndigits

2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

Nterms

Re
lat

ive
er

ro
r(

%
)

14486 62085

551094 20971533

303700005002 AVG

(c) Nterms

Figure: Sensitivity analysis of P4Exp (Nbits = 7, Ndigits = 3 and Nterms = 7)

We fix the integer exponent d to a chosen value, then we find the largest 64-bit integer base x
that maximizes the output xd within 64 bitsAVG is the average relative error in exponential function estimation among 5 · 106 integer

numbers with base x ∈ {1, 232 − 1} and exponent d ∈ {2, 32} both randomly chosen

2(d log2 x)dec = 1 + (d log2 x)dec +
(d log2 x)dec((d log2 x)dec − 1)

2!
+ · · ·︸ ︷︷ ︸

Nterms

Relative error < 1% when Nbits = 7, Ndigits = 3 and Nterms = 7

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 12

Results P4Entropy

5 10 15 20

0

3
5

10

15

20

25

Number of hash functions Nh

Re
lat

ive
er

ro
r(

%
)

P4Entropy (Count-min Sketch)
P4Entropy (Count Sketch)
SOTA_entropy (Count-min Sketch)
SOTA_entropy (Count Sketch)

(a) Sensitivity to Nh (Ns = 1000)

500 1,000 1,500 2,000

0

3
5

10

15

20

25

Output size of hash functions Ns

Re
lat

ive
er

ro
r(

%
)

P4Entropy (Count-min Sketch)
P4Entropy (Count Sketch)
SOTA_entropy (Count-min Sketch)
SOTA_entropy (Count Sketch)

(b) Sensitivity to Ns (Nh = 10)
Figure: Sensitivity of P4Entropy to sketch size (Nbits = 4, Ndigits = 3 and Nterms = 7)

Network traffic entropy estimation is more sensitive to the overestimation caused by
Count-min Sketch with respect to Count Sketch

3% is the maximum possible relative error ensuring that accuracy of practical monitoring
applications is not affected

SOTA_entropy: Lapolli, Ângelo Cardoso, Jonatas Adilson Marques, and Luciano Paschoal Gaspary. ”Offloading real-time ddos attack
detection to programmable data planes.” 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 2019.

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 13

Results P4Entropy

5 10 15 20

0

3
5

10

15

20

25

Number of hash functions Nh

Re
lat

ive
er

ro
r(

%
)

P4Entropy (Count-min Sketch)
P4Entropy (Count Sketch)
SOTA_entropy (Count-min Sketch)
SOTA_entropy (Count Sketch)

(a) Sensitivity to Nh (Ns = 1000)

500 1,000 1,500 2,000

0

3
5

10

15

20

25

Output size of hash functions Ns

Re
lat

ive
er

ro
r(

%
)

P4Entropy (Count-min Sketch)
P4Entropy (Count Sketch)
SOTA_entropy (Count-min Sketch)
SOTA_entropy (Count Sketch)

(b) Sensitivity to Ns (Nh = 10)
Figure: Sensitivity of P4Entropy to sketch size (Nbits = 4, Ndigits = 3 and Nterms = 7)
3% is the maximum possible relative error ensuring that accuracy of practical monitoring

applications is not affected 4

4Ashwin Lall et al. “Data streaming algorithms for estimating entropy of network traffic”. In: ACM SIGMETRICS Performance Evaluation
Review. Vol. 34. 1. pp. 145-156, 2006.

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 13

Conclusion and future work
1. We presented two new algorithms, P4Log and P4Exp, providing the estimation

of logarithm and exponential function in P4.
2. Based on these two algorithms, we also proposed P4Entropy strategy to estimate

the network traffic entropy.
3. The algorithms have the similar accuracy to the state-of-the-art solutions but do

not rely on expensive and energy-hungry TCAMs while working entirely in the
switch.

4. P4Entropy adopts a time-interval-based observation window that may allow the
controller to synchronize the entropy collected from all switches

Future work:
1. Implement network traffic entropy-based DDoS detection entirely in

programmable data planes
2. Test proposed algorithms and strategy on a real testbed

,[.5em]
Estimating Logarithmic and Exponential Functions

to Track Network Traffic Entropy in P4
D.Ding et al. ding@fbk.eu 14

	Network monitoring/security functionalities in programmable data planes
	Network traffic entropy
	P4 language limitations
	 Why logarithmic and exponential-function estimations?
	 Our contributions
	 P4Log algorithm
	 P4Exp algorithm
	 P4Entropy strategy
	Evaluation settings
	

	Results
	P4Log

	Results
	P4Exp

	Results
	P4Entropy

	Conclusion and future work

