

Design and Development of Network Monitoring Strategies in P4-enabled Programmable Switches

Damu Ding

Supervisor: Dr.Domenico Siracusa (FBK)

Co-supervisors: Dr.Marco Savi and Dr.Federico Pederzolli

University of Bologna, Bologna, Italy

NOMS 2022 dissertation digest 28th April, 2022

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

- Network Application(s) Open northbound API Controller Platform Open southbound API Des forwarding sentences Des forwarding sentences Des forwarding sentences Des forwardings open forwardings
- 1. Significant communication overhead
 - 2. The latency caused by interaction
- 3. Cannot perform monitoring at line-rate speed (Up to 100 Gbps)

Network Infrastructure

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

Figure source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76. and https://n0where.net/real-time-network-monitoring-cyberprobe

P4-enabled programmable data plane for monitoring

Challenges

32x 100Gbps QSFP ports

1. Higher monitoring throughput

Limited hardware resources
 Computational constraints

Figure: Edgecore Wedge-100BF-32X switch equipped with Barefoot Tofino ASIC in FBK's lab

Network monitoring tasks in literature cannot be directly offloaded to programmable switch data plane

Design and Development of Network Monitoring Strategies in P4-enabled Programmable Switches Damu Ding damu.ding@eng.ox.ac.uk

4

Motivation

Goal

 \mathbf{O}

Design and develop new strategies for specific monitoring tasks in P4-enabled programmable data planes considering the switch constraints

Motivation

Goal

Design and develop new strategies for specific monitoring tasks in P4-enabled programmable data planes considering the switch constraints
Focus on

Focus on ISP networks

- Minimize out-of-band actions
- High network performance

Outline

Part 2 Normalized network traffic entropy-based volumetric DDoS detection

Part 3 Per-flow cardinality-based volumetric DDoS detection

Harrison, Rob, et al. "Network-Wide Heavy Hitter Detection with Commodity Switches." Proceedings of the Symposium on SDN Research, 2018.

SOTA

Harrison, Rob, et al. "Network-Wide Heavy Hitter Detection with Commodity Switches." Proceedings of the Symposium on SDN Research, 2018.

SOTA

Harrison, Rob, et al. "Network-Wide Heavy Hitter Detection with Commodity Switches." Proceedings of the Symposium on SDN Research, 2018.

Harrison, Rob, et al. "Network-Wide Heavy Hitter Detection with Commodity Switches." Proceedings of the Symposium on SDN Research, 2018.

SOTA

- RQ1: How to efficiently collect flow statistics in the switch?
- RQ2: How to accurately merge flow statistics in the controller?

Harrison, Rob, et al. "Network-Wide Heavy Hitter Detection with Commodity Switches." Proceedings of the Symposium on SDN Research, 2018.

SOTA

Network-wide heavy-hitter detection (NWHHD+)

Damu Ding, Marco Savi, Gianni Antichi, and Domenico Siracusa. An incrementally-deployable P4-enabled architecture for network-wide heavy-hitter detection. IEEE Transactions on Network and Service Management (TNSM) 17.1 (2020): 75-88.

Cormode, Graham, and M. Muthukrishnan. "Count-Min Sketch." (2009): 511-516.

¹https://sites.uclouvain.be/defo

 $TP = Count_{Heavyhitter}^{detected/true}$, $FP = Count_{Heavyhitter}^{detected/false}$, $TN = Count_{Heavyhitter}^{undetected/true}$

Simulation and emulation results

			undright of the second se
Evaluation metrics	SOTA ²	NWHHD+] H 0.6
F1 score	0.821	0.907]
Communication overhead*	71877	60354	
Occupied memory*	760042	60255	Sketch size $(N_h \times N_s)$
			$ \frac{1}{2}$ $\frac{1}{2}$ NWHHD+ 10 x 2000
*Measuremen	t ID	#pkts	$\overline{\mathfrak{Z}}_{0,0}$ \mathcal{J} \mathcal{J} \mathcal{J} Forwarding
units		2000	500 1000 1500 2000 2500 3000 3500 Processing time (μs)
			Cumulative distribution function of
			packet processing time in mininet
			(10000 packets)

² Harrison, Rob, et al. "Network-Wide Heavy Hitter Detection with Commodity Switches." Proceedings of the Symposium on SDN Research, 2018.

Normalized network traffic entropy-based DDoS detection

Normalized network traffic entropy

Normalized network traffic entropy H_{norm} indicates network traffic distribution

Normalized network traffic entropy in programmable switches

Normalized network traffic entropy

³ Durand, Marianne et al. "Loglog counting of large cardinalities." European Symposium on Algorithms. Springer, Berlin, Heidelberg, 2003.

⁴M. Charikar et al, "Finding frequent items in data streams," in Springer International Colloquium on Automata,Languages, and Programming (ICALP), 2002.

Normalized network traffic entropy-based DDoS detection

Property of volumetric DDoS attacks

Adaptive threshold for DDoS detection

 $egin{aligned} {f DDoS threshold}\ \lambda^k_{norm} = EWMA^k_{norm} - \epsilon \end{aligned}$

DDoS trace name	Packets per second	Attack source IPS
Booter 6	\sim 90000	7379
Booter 7	\sim 41000	6075
Booter 1	\sim 96000	4486
Booter 4	\sim 80000	2970

DNS-amplification DDoS attacks

Booter is a class of on-demand services that provide illegal support to launch DDoS attacks targeting websites and networks.

 $D_{tp} = rac{\#Time \; intervals[TP]}{\#Time \; intervals[TP+FN]}$ $D_{fp} = rac{\#Time \; intervals[FP]}{\#Time \; intervals[TN+FP]}$

$$D_{acc} = rac{\#Time\ intervals[TP+TN]}{\#Time\ intervals[TP+TN+FP+FN]}$$

Configuring DDoS detection threshold

- Minimize false positive rate D_{fp} ($\epsilon \in [0.01, 0.1]$)
- Maximize true positive rate D_{tp} ($\epsilon \in [0, 0.02]$)
- ▶ Maximize detection accuracy D_{acc} ($\epsilon \in [0.01, 0.02]$)

Configuring DDoS detection threshold

- Minimize false positive rate D_{fp} ($\epsilon \in [0.01, 0.1]$)
- Maximize true positive rate D_{tp} ($\epsilon \in [0, 0.02]$)
- Maximize detection accuracy D_{acc} ($\epsilon \in [0.01, 0.02]$)

 $\epsilon = 0.01$

State of the art (SOTA_DDoS)

Lapolli, Angelo Cardoso, Jonatas Adilson Marques, and Luciano Paschoal Gaspary. "Offloading real-time ddos attack detection to programmable data planes." 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 2019.

Comparing to SOTA

Algorithm	False-positive	True-positive rate D_{tp} / Detection accuracy D_{acc}				
	rate D_{fp}	Booter 6	Booter 7	Booter 1	Booter 4	Mixed
P4DDoS	8%	100% / 96%	82% / 87%	96% / 94%	98% / 95%	100% / 96%
SOTA_DDoS 5	10%	100% / 95%	74% / 82%	100% / 95%	94% / 92%	100% / 95%

Booter name	PPS	Attack sources
Booter 6	\sim 90000	7379
Booter 7	\sim 41000	6075
Booter 1	\sim 96000	4486
Booter 4	\sim 80000	2970

⁵Lapolli, Angelo Cardoso, Jonatas Adilson Marques, and Luciano Paschoal Gaspary. "Offloading real-time ddos attack detection to programmable data planes." 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 2019.

Comparing to SOTA

Algorithm	False-positive	True-positive rate D_{tp} / Detection accuracy D_{acc}				
	rate D_{fp}	Booter 6	Booter 7	Booter 1	Booter 4	Mixed
P4DDoS	8%	100% / 96%	82% / 87%	96% / 94%	98% / 95%	100% / 96%
SOTA_DDoS 5	10%	100% / 95%	74% / 82%	100% / 95%	94% / 92%	100% / 95%
And						

- No need to use power-hungry TCAM memory
 - Only relies on P4-supported operations
- Much simpler, i.e., lower implementation complexity
 - Only relies on normalized entropy of destination IPs
- Robust to the flow fluctuations in different time intervals
 - Normalized entropy instead of only entropy

Booter name	PPS	Attack sources
Booter 6	~ 90000	7379
Booter 7	\sim 41000	6075
Booter 1	\sim 96000	4486
Booter 4	~ 80000	2970

⁵Lapolli, Angelo Cardoso, Jonatas Adilson Marques, and Luciano Paschoal Gaspary. "Offloading real-time ddos attack detection to programmable data planes." 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 2019.

Per-flow cardinality-based DDoS detection

Property of volumetric DDoS attacks

Threat model and deployment scenario

different destinations in the programmable switch is necessary

Spread Sketch

Tang, Lu, Qun Huang, and Patrick PC Lee. "Spreadsketch: Toward invertible and network-wide detection of superspreaders." IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 2020.

Spread Sketch

Tang, Lu, Qun Huang, and Patrick PC Lee. "Spreadsketch: Toward invertible and network-wide detection of superspreaders." IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 2020.

BACON Sketch

In-network DDoS victim identification (INDDoS)

Damu Ding, Marco Savi, Federico Pederzolli, Mauro Campanella, and Domenico Siracusa. In-Network Volumetric DDoS Victim Identification Using Programmable Commodity Switches IEEE Transactions on Network and Service Management (TNSM).

 $TP = Count_{DDoSvictim}^{detected/true}$, $FP = Count_{DDoSvictim}^{detected/false}$, $TN = Count_{DDoSvictim}^{undetected/true}$

Sensitivity analysis of DDoS victim identification

NB. Spread Sketch cannot be fully executed in programmable data planes

⁶Tang, Lu, Qun Huang, and Patrick PC Lee. "Spreadsketch: Toward invertible and network-wide detection of superspreaders." IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 2020.

DDoS victim identification accuracy under Booter attacks

Conclusion

- Offload monitoring tasks from SDN controller to data plane programmable switches leveraging various memory-efficient data structures
 - Count-min Sketch
 - LogLog counting
 - Count Sketch
 - and much more ...
- Focus on smart monitoring strategies in programmable data planes
 - Network-wide heavy-hitter detection
 - Normalized entropy-based volumetric DDoS detection
 - Per-flow cardinality-based volumetric DDoS detection
 - and much more ...
- Proved network monitoring performance using programmable switches
 - High monitoring accuracy
 - Low packet processing time for monitoring
 - Valid for high-throughput networks

Thank you!

